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1 Introduction

In the first instance, a ‘dynamical system’ in mathematics is a mathematical object

intended to capture the intuition of a ‘system’ in the real world that passes through

some set of different possible ‘states’ as time passes. Although the origins of the

subject lie in physical systems (such as the motion of the planets through different

mutual positions, historically the first example to be considered), the mathematical

study of these concepts encompasses a much broader variety of models arising in

the applied sciences, ranging from the fluctuations in the values of different stocks

in economics to the ‘dynamics’ of population sizes in ecology.

The mathematical objects used to describe such a situation consist of some set X
of possible ‘states’ and a function T : X −→ X specifying the (deterministic1)

movement of the system from one state to the next. In order to make a useful

model, one must endow the set X with at least a little additional structure and

then assume that T respects that structure. Four popular choices, roughly in order

of increasing specificity, are the following:

• X a measurable space and T measurable — this is the setting of measurable

dynamics;

1There are also many models in probability theory of ‘stochastic dynamics’, such as Markov

processes for which T is replaced by a probability kernel, which is something akin to a ‘random-

ized function’ – these lie outside the scope of this course.
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• X a topological space and T continuous — topological dynamics;

• X a smooth manifold and T a smooth map — smooth dynamics;

• X a compact subset of C and T analytic — complex dynamics.

This course is basically concerned with the first of these possibilities, although we

will also work with the second a few times. Smooth and complex dynamics are

both highly-developed fields in their own right, but the extra structure that they

have available makes them rather different from the measurable setting.

In fact the bare setting of measurable spaces and maps is still a little too broad: in

order to develop a coherent theory we will make three additional assumptions:

• we will consider transformations of a measurable space (X,Σ) that preserve

some probability measure µ on the space;

• we will assume our measurable spaces (X,Σ) are countably generated:

that is, that there are A1, A2, . . .∈ Σ which together generate the whole

σ-algebra Σ;

• and we will work exclusively with transformations that are invertible.

Remarks 1. There is a theory of measure-preserving transformations on infinite-

measure spaces, and even a theory for transformations which only leave some

measure quasi-invariant (meaning that T#µ and µ are each absolutely continuous

relative to the other, but they may not be equal). However, the assumption of an

invariant probability measure gives us access to a huge range of phenomena and

techniques that are not valid more generally, and as a consequence those other the-

ories, although very deep in places, tend to give a much less precise understanding

of a given dynamical system or question. On the other hand, the assumption of a

finite invariant measure is also valid in sufficiently many cases that this theory is

well worth pursuing in its own right.

2. The assumption that Σ is countably generated is to prevent our measure

space from being ‘too large’, so that strange set-theoretic phenomena can impinge

on our work. All measure spaces that arise in practice (such as from compact

metric spaces) are countably generated.

3. The assumption that T be invertible is not quite so severe as it might seem.

There is a standard construction, called the ‘natural extension’, whereby a single
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non-invertible µ-preserving map T : X −→ X may be represented as a ‘piece’

of an invertible probability-preserving map on a larger space. This construction

can be found, for instance, in Subsection 1.3.G of Petersen [Pet83], or on the first

problem sheet. In view of this, we will not worry further about non-invertible

transformations, and so settle on the following as our basic definition. ▹

Definition 1.1 (Probability-preserving transformation). If (X,Σ, µ) is a probabil-

ity space, then a probability-preserving transformation (p.p.t.) is a measurable

function T : X −→ X such that µ(T−1(A)) = µ(A) for all A ∈ Σ.

However, having chosen to focus on this class of transformations, there is a dif-

ferent respect in which we can and will greatly generalize the work that we do:

rather than considering a single p.p.t., many of our results will be formulated and

proved for whole groups of p.p.t.s.

Definition 1.2 (Probability-preserving system). Given a countable group Γ, a

probability-preserving Γ-system (p.p. Γ-system, or just p.p.s. if Γ is understood)

is a probability space (X,Σ, µ) together with a collection (T γ)γ∈Γ of p.p.t.s such

that

T γλ = T γ ◦ T λ

for any γ, λ ∈ Γ. (Put another way: it is a homomorphism T : Γ −→ Aut(X,Σ, µ)
into the group of all p.p.t.s on the space (X,Σ, µ).)

While time has only one arrow, there are many applications in which a system ex-

hibits many different kinds of symmetry, and a whole group of p.p.t.s can be used

to describe this: for example, a probability measure describing the typical posi-

tions of the gas particles in a very cavernous room should be invariant under small

shifts in any of the three spatial coordinate directions (at least approximately, and

provided we ignore properties that are particular to the boundary of the room). It

is therefore a happy occurrence that much of basic ergodic theory can be devel-

oped for more general classes of group than just Z. In this course we will prove

results for completely general countable groups Γ where possible, and in a few

places will specialize to the case of Zd (still better than just Z) where some extra

structure on the part of the group is needed.

Finally, a few more words are in order concerning the relation between ergodic

theory and topological dynamics (the second setting introduced above). Although

much of ergodic theory can be formulated for completely arbitrary probability
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spaces, certain technical arguments are made much easier by assuming that our

probability space is actually a compact metric space with its Borel σ-algebra and

a Borel probability measure. We will see later in the course that this is not really

a restriction, in the sense that all p.p.s.s admit so-called ‘compact models’, but in

the meantime we will simply assume this where it is helpful.

1.1 Examples and the classification problem

Ergodic theory is a subject underlain by a wealth of examples, and it is valuable

to meet some of these before we begin to develop the general theory.

1. The identity transformation id on a probability space is obviously measur-

able and probability-preserving.

2. Other simple examples come from finite sets: if S is a finite set then a

group Γ can act on it by permutations, i.e. through a homomorphism Γ −→
Sym(S), and this will obviously preserve the normalized counting measure

on S.

3. Compact group rotations Suppose that Γ is our acting group,G is a com-

pact metric group with Haar measure mG (this measure is recalled below)

and φ : Γ −→ G is a homomorphism. Then we define the resulting rotation

action Rφ : Γ y (G,B(G),mG) by

Rγ
φ(g) := φ(γ) · g.

Note that the defining property of the Haar measure mG is its invariance

under all translations on G, so it is certainly Rφ-invariant.

To give a more concrete example in case Γ = Z, let α ∈ T and define the

resulting rotation Rα : T −→ T by Rα(t) = t + α. In this case G =
T and the homomorphism φ above is given by φ(n) = nα. This more

concrete example is referred to as a circle rotation and its obvious higher-

dimensional analog on T
n as a torus rotation.

Slightly more generally, if Γ, G and φ are as above and H ≤ G is a closed

subgroup, then we can also define a rotation action Rφ on the compact ho-

mogeneous space G/H by

Rγ
φ(gH) := φ(g)gH.

4



For instance, if we consider the obvious action O(n) y Sn−1 by isometries

and fix a distinguished point u ∈ Sn−1, then we may naturally identify

Stab(u) ⊂ O(n) with a copy of O(n−1), and now since the action of O(n)
is transitive on the sphere we obtain O(n)/O(n − 1) ∼= Sn−1. Combining

this with a homomorphism φ : Γ −→ O(n) we obtain an action of Γ on the

sphere by rigid motions, which obviously preserve the surface measure of

Sn−1.

Such rotation actions on compact homogeneous spaces will play an im-

portant role later in the course.

4. The adding machine and profinite actions Various other special cases

of compact group rotations are also of interest. One famous Z-system is the

adding machine. Consider the set {0, 1}N of infinite strings of 0s and 1s,

identified as the group Z2 of dyadic integers: that is, addition is performed

coordinate-wise modulo 2 but with carry to the right (this gives a different

group law from {0, 1}N regarded simply as a direct product of copies of the

two-element group). This becomes a compact group under addition, and we

define T y Z2 to be the rotation by the element 1 := (1, 0, 0, . . .), so that

T (x1, x2, . . .) =

{

(x1 + 1, x2, . . .) if x1 = 0
(0, 0, . . . , 0, xm+1 + 1, xm+2, . . .) if x0 = . . . = xm = 1 and xm+1 = 0.

This is an example of a profinite action: given a group Γ, a profinite Γ-

system (X,Σ, µ, T ) is a system with

X = S1 × S2 × · · ·

for some sequence of finite sets S1, S2, . . . with the property that if we let

Xm := S1 × S2 × · · · × Sm

and πm : X −→ Xm be the projection onto the first m coordinates, then

πm#µ is the normalized counting measure on Xm and there are finite per-

mutation actions Tm : Γ −→ Sym(Xm) such that Tm ◦ πm = πm ◦ T for

every m. Thus in quite a strong sense the system (X,Σ, µ, T ) is generated

by the sequence of systems (Xm,P(Xm), πm#µ, Tm) acting on finite sets.

5. Compact group automorphisms Let G be a compact group again, but

now suppose that R : Γ −→ Aut(G), where Aut(G) is the discrete group
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of all continuous automorphisms of G: that is, R is an action of Γ such that

Rγ is an automorphism of G for every γ. Then it can be proved that these

Rγ also preserve mG (see the first problem sheet), so (G,B(G),mG, R) is

another p.p.s. What similarities and differences does it have to the the first

example?

Note that in case Γ = Z
d, examples of this kind are often called systems

of algebraic origin. Although we will treat them simply as interesting ex-

amples, their special algebraic structure makes possible a highly developed

theory for them, which is well-treated in Schmidt [Sch95].

6. Bernoulli shifts A very different example arises from the basic data of

probability theory: sequences of i.i.d. random variables.

First suppose that Γ = Z, let [n] := {1, 2, . . . , n} and let p := (p1, p2, . . . , pn)
be a stochastic vector: that is, pi ≥ 1 and

∑n

i=1 pi = 1. This p can natu-

rally be interpreted as the values on singletons of a probability measure on

[n], and sometimes it will itself be referred to as a probability measure.

Form X := [n]Z with the product topology (which is compact and metriz-

able), let Σ be its Borel σ-algebra and let µ := p⊗Z be the product of copies

of this measure p. Now it is easy to check that the right-shift T : X −→ X
defined by

T
(

(xn)n
)

:= (xn+1)n

preserves µ, and so defines a p.p.t. (X,B(X), µ, T ). The link with prob-

ability theory is seen by observing that if πi : X −→ [n] denotes the pro-

jection onto the coordinate indexed by i ∈ Z, then on the probability space

(X,B(X), µ) these form an i.i.d. sequence of [n]-valued random variables.

This system is called the Bernoulli shift over p, and is often denoted simply

by B(p).

More generally, for any probability space (E, ν) and countable group Γ we

could let X := EΓ, µ := ν⊗Γ and define T : Γ y (X,B(X), µ) to be the

coordinate right-shift given by

T γ
(

(xλ)λ
)

= (xλγ)λ.

This is sometimes referred to as the Γ-Bernoulli shift over (E, ν).

7. Geometric examples A wealth of examples can be obtained from smooth

motion on a compact manifold as given by a differential equation or some
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other natural geometric rule. Most classically, planetary motion can be de-

scribed using a Hamiltonian system of differential equations, and the study

of these systems has since taken on a life of its own. Other natural exam-

ples of such geometrical systems are geodesic flows, horocycle flows and

billiard systems (whose dynamics is not technically ‘smooth’). I won’t de-

scribe these in detail here, but gentle introductions to some of these models

can be found in Petersen [Pet83] and Glasner [Gla03].

Having introduced the above examples, it is high time to explain what ergodic

theorists mean by two systems being ‘essentially the same’:

Definition 1.3. Fix a countable discrete group Γ. Two Γ-systems (X,Σ, µ, T ) and

(Y,Φ, ν, S) are isomorphic if there are ‘error sets’ X0 ∈ Σ and Y0 ∈ Φ that are

respectively T -invariant and S-invariant and have µ(X0) = ν(Y0) = 0, and a

measurable bijection φ : X \ X0 −→ Y \ Y0 with measurable inverse such that

the dynamics are intertwined:

φ ◦ T γ(x) = Sγ ◦ φ(x) ∀x ∈ X0.

Remark The basic intuition here is that there should be an invertible mapX −→
Y which converts the group action on X to the group action on Y . The only wrin-

kle is that, as usual in the measure theoretic context, we prefer to overlook any

possible ‘bad’ events that only have probability zero; since it’s conceivable that

one of our systems, say (X,Σ, µ, T ), has some T -invariant subsetX0 on which the

dynamics looks quite different from anything on Y , but which it happens doesn’t

support any of the measure µ, the above definition is framed to enable us to ignore

such awkward but negligible events. ▹

Which of our examples above are isomorphic?

First, it is worth recalling that any two atomless probability measures on compact

metric spaces admit a huge infinity of different measure-preserving isomorphisms

between them: this follows from theorems of Carathéodory and von Neumann

which combined tell us that any such measure space is isomorphic to the unit

interval [0, 1] with Lebesgue measure, via a proof that gives a huge range of such

isomorphisms. Since in practice our probability spaces will always arise as Borel

measures on compact metric spaces, asking simply whether two such probability

spaces are isomorphic is not very interesting.
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However, the condition that an isomorphism should intertwine two different group

actions is much more subtle, and leads to the above interesting question. It is

known as the classification problem. While no good general answer to this

question is known, we will see a couple of very striking partial results later: the

Halmos-von Neumann Theorem treating different compact group rotations, and

the Theorems of Kolmogorov-Sinai, Ornstein and Bowen which solve the iso-

morphism problem for different Bernoulli shifts over a wide range of different

groups.

2 Some pre-requisites

This course will lean on some basic ideas from measure theory and functional

analysis. You may struggle if you’ve not previously met measure spaces, Lebesgue

integration or the basic properties of Banach spaces. At Brown these pre-requisites

are all contained in MA221 and MA222, mostly in the former. I sketch what we

will use later below, mostly without proofs; everything we need can also be found

in most advanced introductions to analysis, such as Folland’s popular text [Fol99].

2.1 Measure theory, probability and point-set topology

In this subsection I simply list some notions that we will need throughout the

course:

• Measurable spaces as pairs (X,Σ) comprising a set equipped with a σ-

algebra of its subsets. σ-subalgebras. Measures on a measurable space. The

leading example of the Borel σ-algebra B(X) of a metric space X as that

generated by the open sets.

• We’ve already mentioned the fact that any two atomless probability spaces

built on the Borel σ-algebras of compact metric spaces (in fact, more gener-

ally, any separable complete metric spaces) are isomorphic, in the standard

sense that there is a measure-respecting Borel bijection between them after

we throw away a negligible set on either side.

• Basic integration theory: the definition of the Lebesgue integral, the mono-

tone and dominated convergence theorems, and the definition of the Banach
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spaces L1(µ), L2(µ) and L∞(µ) of a measure space (X,Σ, µ).

• Given a finite measure space (X,Σ, µ), another measurable space (Y,Φ)
and a measurable map φ : X −→ Y , the pushforward measure φ#µ is

defined by φ#µ(A) := µ(φ−1(A)).

• The formation of the product of two measure spaces (X×Y,Σ⊗Φ, µ⊗ν),
and also the infinite product in the case of probability spaces.

• Conditional expectation: If (X,Σ, µ) is a probability space, Φ ≤ Σ a σ-

subalgebra and f ∈ L1(µ) then there is a function E(f |Φ) ∈ L1(µ|Φ) such

that
∫

X

E(f |Φ)g dµ =

∫

X

fg dµ ∀g ∈ L1(µ|Φ),

and the choice of E(f |Φ) is unique up to almost-everywhere agreement.

• Basic definition of a compact metric space; formation of products of finitely

or countably infinitely many such spaces, and the fact that they are still

compact metric (Tychonoff’s Theorem).

2.2 The space of finite Borel measures and the Riesz Represen-

tation Theorem

If (X, ρ) is a compact metric space, then the space C(X) of continuous real-

valued functions on X is a Banach space when equipped with the uniform norm

∥·∥∞, and moreoverC(X) is separable: indeed, sinceX is separable, if (xn)n is a

dense sequence in X , then the Stone-Weierstrass Theorem promises that rational-

coefficient polynomial combinations of the distance functions

fn : x 7→ ρ(xn, x)

comprise a countable uniformly dense subset of C(X).

We will generally write M(X) for the real vector space of all finite signed Borel

measures on X , and Pr(X) for the subset of Borel probability measures.

Theorem 2.1 (Riesz Representation Theorem). Suppose thatX is a compact met-

ric space and let C(X) be the Banach space of continuous real-valued functions
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on X equipped with the supremum norm. If µ is a signed Borel measure on X
then we may define a linear functional ψµ ∈ C(X)∗ by

ψµ(f) :=

∫

X

f dµ.

This definition sets up a linear isometry between the space M(X) of signed Borel

measures on X with the total variation norm and the dual space C(X)∗ with its

dual norm. Crucially, any bounded linear functional on C(X) is represented by a

signed measure in this way.

A measure µ is positive if and only if

ψµ(1X) = ∥ψµ∥

and is a probability measure if and only if in addition this common value is 1.

In view of this theorem, we will generally abuse notation by regarding finite signed

measures (such as probability measures) on X as being themselves members of

C(X).

Corollary 2.2. If we endow Pr(X) with the topology inherited from the weak∗

topology on C(X)∗, then it is compact and metrizable in that topology.

Sketch Proof This follows from the Riesz Representation Theorem and the

Banach-Alaoglu Theorem, which implies that the closed unit ball of C(X)∗ is

weak∗-compact. Given this, it suffices to show that Pr(X) is a weak∗-closed sub-

set of that unit ball. However, the identification

Pr(X) :=
{

µ ∈ C(X)∗ :
∫

1X dµ = 1
}

∩
∩

f∈C(X): ∥f∥≤1

{

µ ∈ C(X)∗ :
∣

∣

∣

∫

f dµ
∣

∣

∣
≤ 1

}

expresses Pr(X) as an intersection of manifestly weak∗-closed sets. Finally, note

that since C(X) is separable, if we let (fn)n be a uniformly dense sequence in its

unit ball then the weak∗ topology on Pr(X) agrees with that obtained from the

metric

ρ(µ, µ′) :=
∞
∑

n=1

2−n
∣

∣

∣

∫

fn dµ−
∫

fn dµ
′
∣

∣

∣
,

so this topology is also metrizable.
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2.3 Harmonic analysis

In this course our need for ‘harmonic analysis’ will focus on the analysis of con-

tinuous and measurable functions on compact metric groups (in particular, we will

not venture into the more general setting of groups that are only locally compact).

This means groups G that are equipped with a complete, compact metric ρ that is

invariant under translation:

ρ(gh, gk) = ρ(hg, kg) = ρ(h, k) ∀g, h, k ∈ G

and for which the operations of inverseG −→ G and multiplicationG×G −→ G
are continuous.

Theorem 2.3 (Haar measure). A group G such as above can be equipped with a

unique Borel measure mG that is left- and right-translation invariant,

mG(gE) = mG(E) = mG(Eg) ∀E ∈ B(G), g ∈ G,

and is normalized to be a probability measure (i.e. mG(G) = 1).

The above theorem can be found in [Fol99] and also in texts on abstract harmonic

analysis such as Hewitt and Ross [HR79].

Some examples of compact metric groups are the following, for each of which the

unique Haar probability measure can easily be described directly.

1. Our most important example is the circle group

T := R/Z

equipped with its quotient topology and with the group operation being ad-

dition modulo 1. This group is easily seen to be compact and metrizable.

An isomorphic copy of this group is obtained as the set of unit vectors in C

S1 := {z ∈ C : |z| = 1},

where now the group operation is multiplication; clearly the map

R −→ S1 : θ 7→ e2πiθ

is an onto continuous homomorphism with kernel Z, and so defines the

desired continuous isomorphism T ∼= S1 (the continuity of the inverse is an

easy exercise).
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2. More generally, the higher dimensional tori Tn, n ≥ 2, may be conceived as

either Cartesian powers of T or as the higher-dimensional quotients Rn/Zn.

3. Non-Abelian examples may be found in the form of the orthogonal groups

O(n) (that is, the groups of linear isometries of Rn, which are compact Lie

groups) and their various closed subgroups.

4. We can always take countable Cartesian products of examples to form fur-

ther examples, such as the infinite product TN, which unlike the above is

not a Lie group.

5. Finally, it is worth bearing in mind that any finite group is also an example.

In addition to the above examples, there are more complicated compact metric

groups that are not ‘finite-dimensional’ after the fashion of Lie groups or finite

groups. There is a theory telling us that any compact metric group can be gener-

ated as an inverse limit of these examples (this is a consequence of the Peter-Weyl

Theorem), but we will not make any direct appeal to it in this course.

2.4 Spectral theorems

Suppose that H is a complex Hilbert space. Then a bounded operator T : H −→ H

is compact if the image T (B) of the unit ball B ⊂ H is precompact. In case T is

also self-adjoint, it is possible to give a very explicit picture of such an operator.

The following theorem is treated more carefully and generally, for example, in

Conway’s book [Con90].

Theorem 2.4. If T is a compact self-adjoint operator, then there are an orthonor-

mal sequence ξ1, ξ2, . . .∈ H and real numbers λ1, λ2, . . . such that |λ1| ≥ |λ2| ≥
. . ., |λi| −→ 0 and

T =
∑

i≥1

λiPi,

where Pi is the one-dimensional orthogonal projection onto C · ξi.

Proof Step 1. We will first show that we can find inductively an orthonormal

sequence of eigenvectors ξ1, ξ2, . . . such that Tξi = λiξi for some λi ∈ R.
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Of course, if we have already found such ξ1, ξ2, . . . , ξm, then T preserves the

orthogonal complement span{ξ1, ξ2, . . . , ξm}
⊥, because

⟨ζ, ξi⟩ = 0 ⇒ λi⟨ζ, ξi⟩ = ⟨ζ, T ξi⟩ = ⟨Tζ, ξi⟩ = 0,

using the fact that T is self-adjoint. So if we know how to find a single eigenvector

for such a T , then applying that knowledge to T |span{ξ1,ξ2,...,ξm}⊥ enables us to find

ξm+1. Hence it suffices to show that any compact self-adjoint operator has an

eigenvector.

Because T (B) is compact and the norm is a continuous function on H, it achieves a

maximum on this set, say at ξ ∈ T (B). By definition it follows that ∥ξ∥ = ∥T∥op.

Let ζn ∈ B be a sequence such that Tζn −→ ξ in norm, and now consider that

∥T∥op∥ξ∥ = ∥ξ∥2 = lim
n
⟨ζn, T

2ζn⟩

≤ lim sup
n

∥ζn∥∥T
2ζn∥ ≤ lim sup

n

∥T (Tζn)∥ = ∥Tξ∥.

Hence ξ also has the property that ∥Tξ∥ = ∥T∥op∥ξ∥. Using the self-adjointness

of T and the Cauchy-Schwartz inequality, this now implies that

∥T∥op∥ξ∥∥Tξ∥ = ∥Tξ∥2 = ⟨ξ, T 2ξ⟩ ≤ ∥ξ∥∥T 2ξ∥.

On the other hand, by the definition of the operator norm we have ∥T 2ξ∥ ≤
∥T∥op∥Tξ∥, so in fact all the expressions above are equal and hence

⟨ξ, T 2ξ⟩ = ∥ξ∥∥T 2ξ∥.

Since equality can occur in the Cauchy-Schwartz inequality only in the case of

vectors differing by a positive real multiple, this implies that T 2ξ = λξ for some

λ > 0.

Therefore the subspace span{ξ, T ξ} ≤ H is either one- or two-dimensional and

invariant under T . If it is actually one-dimensional then we are done; if not,

then the restriction T |span{ξ,T ξ} is a self-adjoint operator on a two-dimensional

Euclidean space, whose diagonalizability is well-known. Hence simply changing

basis in span{ξ, T ξ} gives two orthogonal one-dimensional invariant subspaces,

and once again the proof can proceed.

Step 2. Having found a sequence of eigenvectors ξ1, ξ2, . . . as in Step 1 and

normalized them all to be unit vectors, it only remains to observe that their cor-

responding eigenvalues must satisfy λi −→ 0, since otherwise T would not be
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compact: indeed, if there were a subsequence (λij)j all of absolute value at least

κ > 0, then the sequence of images

Tξij = λijξij j = 1, 2, . . .

lies in T (B) and consists of vectors that are orthogonal and all have norm at

least κ. This sequence would therefore have no further convergent subsequence,

contradicting that T (B) is compact. On the other hand, since the procedure for

producing the eigenvector sequence in Step 1 was greedy in the sense that

∥Tξm+1∥ = ∥Tspan{ξ1,...,ξm}⊥∥op∥ξm+1∥ ∀m ≥ 0,

it follows that ∥Tspan{ξ1,...,ξm}⊥∥op −→ 0 as m −→ ∞ and hence that T must

actually be zero on span{ξ1, ξ2, . . .}
⊥, so we are left with the desired representa-

tion.
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Ergodic Theory: Notes 2

1 The Ergodic Theorems

Suppose that T ñ ♣X, Σ, µq is a p.-p.t. Pick x P X , and consider its orbit: the

set of points tTnx : n P Z✉. Within this one may consider the finite pieces

tx, Tx, . . . , TNx✉ for larger and larger N . One basic intuition from the early days

of ergodic theory is that, as N increases, these should ‘fill up’ some region of the

state space, and should become more and more ‘evenly distributed’ within that re-

gion. This kind of phenomenon was first proposed as the ‘ergodic hypothesis’ by

Boltzmann, in the case of a system describing the positions and momenta of all the

particles in a gas. Birkhoff believed that for each initial state x, these orbit-pieces

should become ‘evenly distributed’ among the set of all possible states having the

same total energy as x (energy being a conserved quantity). Indeed, the word ‘er-

godic’ was invented for the name of this hypothesis, taken from the Greek ‘ergon’

(‘work’) and ‘odos’ (‘path’).

In modern ergodic theory, we understand this idea in terms of the associated run-

ning averages of ‘observables’. An ‘observable’ is just a function f P L1♣µq, and

we will consider the averages

SNf♣xq :✏
1

N

N➳
n✏1

f♣Tnxq.

The ‘even distribution’ of the orbits can be discussed in terms of the limiting be-

haviour of these averages. The intuition above essentially asserts that they should

converge to the spatial average of f over some region of the state space X . We will

shortly make this expectation precise.

This convergence question can be generalized to p.-p. Γ-systems for many other

groups Γ, subject to certain abtract assumptions. In these notes we will state and

prove the basic ergodic theorems for Γ ✏ Zd, and will briefly mention later the

much larger class of ‘amenable’ groups to which these results can also be extended.
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For a Zd-action, the averages above are replaced by

SNf♣zq :✏
1

Nd

➳
nPrNsd

f♣Tnxq,

where rN s :✏ t1, 2, . . . , N✉.

Remark. Another way to think about ergodicity is that, given x P X , the measure

1

Nd

➳
nPrNsd

δTnx

should become ‘smoothed’ out in ♣X, Σ, µq as N ÝÑ ✽. This notion can be made

precise if ♣X, T q is a topological dynamical system, as well as a p.-p. system. That

will be the subject of the next set of notes. ⊳

1.1 Ergodicity and statement of the theorems

The obvious spatial average for an observable f is
➩
X

f dµ, but there are many

system for which this need not be the correct limit.

Example. Suppose that T : Zd
ñ ♣X, Σ, µq has the property that X ✏ X1 ❨X2,

a disjoint union of two measurable subsets, with 0 ➔ µ♣X1q ➔ 1, and such that

these subsets are invariant under the dynamics: TnXi ✏ Xi for i ✏ 1, 2 and for all

n P Zd. Now let f :✏ 1X1
. Then for all N ➙ 1 we have

SNf♣xq ✏

✧
1 if x P X1,

0 if x P X2.

⊳

Definition 1. A p.-p. Γ-system ♣X, Σ, µ, T q is ergodic if it has no decomposition

into two T -invariant, positive-measure pieces as above: equivalently, if for every

set A P Σ such that T γA ✏ A for all A, one has µ♣Aq P t0, 1✉.

Thus, the ergodic systems are the only ones for which our averages could possibly

converge to
➩
X

f dµ for all f , and we will see that this is the case.

In general, the spatial averages do always converge to something which we can

describe quite simply, but we need to account for the failure of ergodicity. That can

be done in terms of the invariant σ-algebra of a p.-p.s. ♣X, Σ, µ, T q:

ΣT :✏ tA P Σ : T γA ✏ A ❅γ P Γ✉.

Before approaching the ergodic theorems, it is worth recording the following.
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Proposition 2 (Characterizations of ergodicity). The following are equivalent:

1. T : Γñ ♣X, Σ, µq is ergodic;

2. the σ-algebra ΣT consists of only negligible and co-negligible sets;

3. if A P Σ is such that µ♣T γA△Aq ✏ 0 for all γ, then µ♣Aq P t0, 1✉;

4. if a measurable function f : X ÝÑ R is such that f♣T γxq ✏ f♣xq for every

x P X and γ P Γ, then f is a.e. equal to a constant function;

5. if a measurable function f : X ÝÑ R is such that f♣T γxq ✏ f♣xq for µ-a.e.

x for every γ P Γ, then f is a.e. equal to a constant function.

Proof. (1.ðñ 2.) Immediate from the definition of ΣT .

(1. ðù 3.) Trivial.

(1. ùñ 3.) If µ♣T γA△Aq ✏ 0, then the set B :✏
➇

γPΓ T γB is a countable

intersection (because Γ is countable) of sets that all agree with A a.e., so µ♣A③Bq ✏
0. Also, B is strictly T -invariant by construction. Therefore (1) gives µ♣Aq ✏
µ♣Bq P t0, 1✉.

(1. ðù 4.) If A P Σ is T -invariant, then its indicator function 1A is a T -

invariant. By assumption, this means 1A is a.e. equal to a constant, and so A is

either negligible (so 1A ✏ 0 a.e.) or co-negligible (so 1A ✏ 1 a.e.).

(1. ùñ 4.) Now suppose that T is ergodic and that f P Lp♣µq is T -invariant.

Then each level set

Aq :✏ tx P X : f♣xq ↕ q✉ for g P Q

is T -invariant, so by ergodicity, µ♣Aqq P t0, 1✉ for every q P Q. Since f takes

finite values a.e., we must have µ♣Aqq ÝÑ 0 as q ÝÑ ✁✽, and hence in fact

µ♣Aqq ✏ 0 for all sufficiently small q; similarly, µ♣Aqq ✏ 1 for all sufficiently

large q. Let

r :✏ suptq P Q : µ♣Aqq ✏ 0✉,

and let A :✏
➈

qPQ❳♣✁✽,rq Aq. This is measurable, as a countable union of mea-

surable sets. On the other hand, Aq ❸ Aq✶ whenever q ↕ q✶, which implies easily

that also µ♣Aqq ✏ 1 whenever q → r. It follows that the sets

tf ➔ r✉ ✏
↕

qPQ❳♣✁✽,rq

Aq

3



and

tf → r✉ ✏
↕

qPQ❳♣r,✽q

♣X③Aqq

have measure zero, so f ✏ r a.s.

(4. ðù 5.) Trivial.

(4. ùñ 5.) If f♣T γxq ✏ f♣xq for a.e. x for all γ, then the function g♣xq :✏
infγPΓ f♣T γxq is measurable (as a countable infimum of measurable functions),

Γ-invariant by construction, and agrees with f a.e. Therefore f , like g, must be

equal to a constant a.e.

As these proofs show, we can henceforth afford to be a little sloppy about the

difference between ‘almost invariant’ and ‘invariant’. Henceforth, the assertion

that a function is ‘invariant’ will usually be taken to mean ‘invariant a.e.’.

Remark. There is a technical sense in which an arbitrary system can be decom-

posed into a kind of ‘union’ of ergodic systems, but there may be a whole contin-

uum of these ergodic systems involved, making this a rather complicated descrip-

tion to pursue; we will not treat it in these notes. However, we will need to discuss

ergodicity (and also various strengthenings of it) repeatedly. ⊳

We can now make a start on the main theorem of this set of notes.

Theorem 3 (Ergodic Theorems for Zd). Suppose that T : Zd
ñ ♣X, Σ, µq and

that f P L1♣µq, and let

SNf :✏
1

Nd

➳
nPt1,2,...,N✉d

f ✆ Tn.

Then there is some function f̄ P L1♣µq that is invariant under the dynamics (i.e.

f̄ ✆ Tm ✏ f̄ for all m P Zd) and such that

• (Norm Ergodic Theorem1) SNf ÝÑ f̄ in ⑥ ☎ ⑥1 as N ÝÑ ✽;

• (Pointwise Ergodic Theorem2) there is some X0 ❸ X , depending on f , with

µ♣X0q ✏ 1 and such that SNf♣xq ÝÑ f̄♣xq for all x P X0.

The limit f is equal to E♣f ⑤ΣT q, the conditional expectation onto the σ-subalgebra

of T -invariant sets. This is a.s. equal to
➩
X

f dµ if T is ergodic.

1Due to von Neumann for d ✏ 1, and also called the ‘Mean Ergodic Theorem’
2Due to Birkhoff for d ✏ 1, and also called the ‘Individual Ergodic Theorem’
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Corollary 4. If Γ ✏ Zd, then the following are equivalent:

1. T : Γñ ♣X, Σ, µq is ergodic;

2. for any f P L1♣µq the averages SN ♣fq converge to a constant function f̄ in

L1♣µq;

3. for any f P L1♣µq the averages SN ♣fq converge pointwise to a constant

function f̄ .

1.2 Proof of the Norm Ergodic Theorem

To the collection of p.-p.t.s Tn
ñ ♣X, Σ, µq, we can associate a collection of

operators Un
T : Lp♣µq ÝÑ Lp♣µq (where p can be any given exponent in r1,✽s)

defined by

Un
T f♣xq :✏ f♣Tnxq.

The Norm Ergodic Theorem is really just the assertion that the averages

1

Nd

➳
nPrNsd

Un
T f

converge in the function space L1♣µq as N ÝÑ ✽ when p ✏ 1.

This proof can be presented in various ways; I have chosen to highlight certain fea-

tures that will reappear in our treatment of multiple recurrence later. Other proofs

of both the Norm and Pointwise Ergodic Theorems can be found in most books, at

least for Z-systems; Petersen [Pet83], in particular, covers several different aspects

of these results.

We will first prove some results for functions and convergence in L2♣µq, and then

convert these into L1♣µq results. We do this in order to exploit the extra structure

of the inner product on L2♣µq.

The heart of the proof is the following lemma.

Lemma 5. If f P L2♣µq and✎✎✎ 1

Nd

➳
nPrNsd

Un
T f
✎✎✎
2

⑧ÝÑ 0,

then f must correlate with a T -invariant L2-function: that is,

①g, f② ✏

➺
X

fḡ dµ ✘ 0 for some g P L2♣µq such that g ✆ T ✏ g.
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Proof. By rescaling, we may assume without loss of generality that ⑥f⑥2 ✏ 1. We

will prove that there are δ → 0 and a sequence ♣giqi➙1 in L2♣µq with

• ⑥gi⑥2 ↕ 1 for all i,

• ①gi, f② ➙ δ for all i, and

• ⑥gi ✆ Tp ✁ gi⑥2 ÝÑ 0 as i ÝÑ ✽ for any fixed p P Zd.

Since the unit ball of L2♣µq is compact in the weak topology (By the Banach-

Alaoglu Theorem, since L2♣µq is self-dual), we may always pass to a subsequence

and so assume that gi
weak
ÝÑ g for some g in that unit ball. Now the second and third

conditions ensure that ①f, g② ➙ δ and g ✆ Tp ✏ g for all p P Zd, as required (since

if g ✆ Tp ✘ g then there is some h P L2♣µq such that ①g ✆ Tp ✁ g, h② ✘ 0, but

now by the definition of weak convergence this is the limit of ①gi ✆ Tp ✁ gi, h② ↕
⑥h⑥2⑥gi ✆ Tp ✁ gi⑥2 ÝÑ 0 as i ÝÑ ✽, giving a contradiction).

The construction of the gis rests on a careful re-arrangment of our initial assump-

tion. Consider the squared norm of the averages of interest, and expand then out:

✎✎✎ 1

Nd

➳
nPrNsd

Un
T f
✎✎✎2
2

✏
1

N2d

➳
nPrNsd

➳
n✶PrNsd

①Un
T f, Un✶

T f②

✏
1

N2d

➳
nPrNsd

➳
hPrNsd✁n

①Un
T f, Un�h

T f② ✏
1

Nd

➳
nPrNsd

❆
f,

1

Nd

➳
hPrNsd✁n

Uh
T f
❊

,

where for the last equality we have used the simple fact that

①Un
T f, Un

T g② ✏

➺
♣f ✆ Tnq ☎ ♣g ✆ Tnq dµ ✏

➺
f ☎ g dµ ✏ ①f, g②,

which follows from the assumption that Tn is µ-preserving.

Thus, if this does not tend to zero as N ÝÑ ✽, then there must be arbitrarily large

N and selections of n P rN sd for which the value of

❆
f,

1

Nd

➳
hPrNsd✁n

Uh
T f
❊

stays away from zero. Let Ni and ni for i ➙ 1 be a sequence of such selections,

and let

gi :✏
1

Nd
i

➳
hPrNisd✁ni

Uh
T f.

These functions have the desired properties:
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• gi is an average of functions of norm at most 1 in L2♣µq, and so gi itself has

norm at most 1;

• the largeness of the inner product ①gi, f② was built into our choice of Ni and

ni;

• and for any p P Zd we have

⑥Up
T gi ✁ gi⑥2 ✏

✎✎✎ 1

Nd
i

➳
hPrNisd✁ni

U
h�p
T f ✁

1

Nd
i

➳
hPrNisd✁ni

Uh
T f
✎✎✎
2

✏
✎✎✎ 1

Nd
i

➳
hP♣rNisd✁niq△♣rNisd✁ni�pq

U
h�p
T f

✎✎✎
2

↕
⑤♣rNis

d ✁ niq△♣rNis
d ✁ ni � pq⑤

Nd
i

✏ O
✁
⑤p⑤

Nd✁1

i

Nd
i

✠
ÝÑ 0

as i ÝÑ ✽, as required.

Proof of the Norm Ergodic Theorem. We first prove that if f P L2♣µq then the as-

serted convergence holds in ⑥☎⑥2. Let P be the orthogonal projection of L2♣µq onto

the closed subspace of T -invariant functions, so Pf ✏ E♣f ⑤ΣT q, and decompose

an arbitrary f as ♣f ✁Pfq �Pf . The first term of this decomposition, f ✁Pf , is

orthogonal to all T -invariant functions, and hence by the above argument we must

have
1

Nd

➳
nPrNsd

♣f ✁ Pfq ✆ Tn ÝÑ 0 in norm.

On the other hand, Pf is T -invariant, so

1

Nd

➳
nPrNsd

♣Pfq ✆ Tn ✏ Pf ÝÑ Pf in norm.

Putting these facts together shows that 1

Nd

➦
nPrNsd f ✆Tn converges in ⑥ ☎ ⑥2 to the

T -invariant function Pf .

To turn this L2 result into the desired L1 result, simply recall that on the one hand

⑥ ☎ ⑥1 ↕ ⑥ ☎ ⑥2 (for example, by the Cauchy-Schwartz inequality, since ⑥f⑥1 ✏
①1X , ⑤f ⑤②), and on the other that L2♣µq ⑨ L1♣µq is a dense subspace for the L1♣µq
norm. In view of these facts, an arbitrary f P L1♣µq may be approximated in

L1♣µq by some f ✶ P L2♣µq, and now it follows that (a) SNf ✶ converges to f̄ ✶ in
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⑥ ☎ ⑥2 and therefore certainly in ⑥ ☎ ⑥1, while (b) the difference ⑥SNf ✁SNf ✶⑥1 stays

small as N ÝÑ ✽ since each SN is clearly a contraction on L1♣µq. Since the

approximation by f ✶ can be as good as we please, we must also have convergence

of SNf in L1♣µq.

Remarks. 1. A somewhat similar proof can be given that works directly in

L1♣µq, where we don’t have this inner-product trick to call on. However, this use

of inner products will be more essential in the ‘nonconventional’ ergodic theorems

we will discuss later, where it leads to a separate result by the name of the ‘van der

Corput estimate’, and so it seems worthwhile to showcase it now.

2. Pushing the above argument only slightly further gives a norm ergodic the-

orem in Lp for every p P r0,✽q. More generally, however, it is an interesting and

subtle question to decide for a given Banach space E and isometry T : E ÝÑ E

whether the averages

1

N

N➳
n✏1

Tnξ

converge in norm for every ξ P E. We will not explore this functional ana-

lytic question here, although one important case is covered on the second problem

sheet. ⊳

1.3 Proof of the Pointwise Ergodic Theorem

This is rather more involved than the Norm Ergodic Theorem. The strategy is

similar, but here it’s easier to go straight to the L1♣µq result.

Lemma 6. Suppose that f P L1♣µq and that A P Σ is such that µ♣Aq → 0 and

SNf♣xq ⑧ÝÑ 0

for all x P A. Then there is a T -invariant g P L✽♣µq such that ①f, g② ✘ 0.

Obtaining the Pointwise Ergodic Theorem from this lemma is very similar to the

Norm Ergodic Theorem.

Proof of Pointwise Ergodic Theorem from Lemma 6. Given f P L1♣µq, decompose

it as ♣f ✁E♣f ⑤ΣT qq�E♣f ⑤ΣT q; since conditional expectation is a contraction on

L1♣µq, both of these summands are still in L1♣µq. Now, on the one hand, by the

8



defining properties of conditional expectation we have
➩
X
♣f✁E♣f ⑤ΣT qqg dµ ✏ 0

for every ΣT -measurable g P L✽, so that Lemma 6 implies

SN ♣f ✁ E♣f ⑤ΣT qq♣xq ÝÑ 0 for a.e. x.

On the other, the function E♣f ⑤ΣT q is itself T -invariant, so that SN ♣E♣f ⑤Σ
T qq ✑

E♣f ⑤ΣT q for all N .

It remains to prove Lemma 6. Our assumption tells us that either lim supNÝÑ✽ SNf♣xq →
0 or lim infNÝÑ✽ SNf♣xq ➔ 0 on some positive-measure set; by replacing f with

✁f if necessary we may assume the former. Since

tx : lim sup
NÝÑ✽

SNf♣xq → 0✉ ✏
↕

m➙1

tx : lim sup
NÝÑ✽

SNf♣xq → 1④m✉

and so µtx : lim sup
NÝÑ✽

SNf♣xq → 0✉ ✏ lim
mÝÑ✽

µtx : lim sup
NÝÑ✽

SNf♣xq → 1④m✉,

it follows that we can assume that lim supNÝÑ✽ SNf♣xq → η for some η → 0 for

all x in some positive-measure set A.

Similarly to Lemma 5, it will suffice to prove that there is a sequence gi P L✽♣µq
with

• ⑥gi⑥✽ ↕ 1 for all i,

• ①gi, f② ➙ δ for all i for some fixed δ → 0, and

• ⑥gi ✆ Tp ✁ gi⑥1 ÝÑ 0 as i ÝÑ ✽ for any fixed p P Zd.

Given this, another weak✝-compactness result will finish the proof: we have the

standard identification L✽♣µq ✕ L1♣µq✝, and by the Banach-Alaoglu Theorem in

the resulting weak✝ topology the unit ball of L✽♣µq is compact. Hence having

found such a sequence ♣giqi➙1, its boundedness ensures the existence of a weak✝

limit g along some subsequence, and now the second and third conditions ensure

that ①f, g② ➙ δ and g ✆ Tp ✏ g for all p P Zd, as required (note, in particular,

that because we know the functions gi are bounded in L✽, the fact that they are

approximately invariant only in L1 is still enough to give a strictly invariant limit,

since again if the limit were not strictly invariant then there would be some bounded

function such that ①gi ✆ Tp ✁ gi, h② ✘ 0).

However, the construction of the gi is a little more involved than for norm conver-

gence. What we know is that for some positive-measure A P Σ, for every x P A

9



we can find arbitrarily large integers Nx such that

1

Nd
x

➳
nPrNxsd

f♣Tnxq → η.

We would like to combine this scattered collection of large averages for the various

individual points x P A into a single function gi, which on the one hand gives a

large inner product with f , and on the other is approximately invariant. The inner

product with f should be estimated somehow in terms of the pointwise averages

above. The approximate invariance will presumably arise because g is constructed

from pieces that are constant on ‘large patches’ within each orbit, so that as for

norm convergence we can ultimately exploit the estimate

⑤♣p� rM sdq△rM sd⑤

Md
✏ O

✁
⑤p⑤

Md✁1

M

✠
ÝÑ 0 as M ÝÑ ✽.

To make something like this work in general we first need a simple (but clever)

geometric result that will allow us to ‘process’ these large patches that we want to

take from each orbit. It is a version of the well-known Vitali covering lemma.

Lemma 7 (Basic covering lemma). Suppose that S is a finite family of cubes in

Zd. Then there is a subcollection R ❸ S such that

• it is pairwise disjoint:

Q, Q✶ P R distinct ùñ Q❳Q✶ ✏ ❍;

• it covers a comparable volume to S:

➳
QPR

⑤Q⑤ ✏
✞✞✞↕R

✞✞✞ ➙ 3✁d
✞✞✞↕S

✞✞✞.

Proof. This follows by a greedy algorithm.

Begin by letting Q1 P S be cube of maximal size.

Now suppose we have already chosen Q1, Q2, . . . , Qm for some m ➙ 1. If every

other Q✶ P S intersects Qi for some i ↕ p, then stop and let R :✏ tQ1, . . . , Qm✉.
Otherwise, let Qm�1 be a maximal-size member of

tQ✶ P S : Q✶ ❳ ♣Q1 ❨ ☎ ☎ ☎ ❨Qmq ✏ ❍✉.
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Since S is finite, this algorithm must stop and give R ✏ tQ1, . . . , Qm✉ for some

finite m. This family is pairwise disjoint by construction, so it remains to prove the

volume estimate.

For any cube Q, let 3 ☎Q denote the cube with the same centre as Q but three times

the side length. Then for any v P Q✶ P S, either Q✶ P R, so that v P
➈

R; or Q✶ ❘
R and so Q✶ ❳ Qi ✘ ❍ for some i ↕ m, since R is a maximal pairwise-disjoint

family. Letting i be minimal with this property, it also follows that ⑤Q✶⑤ ↕ ⑤Qi⑤, for

otherwise our algorithm would have chosen Q✶ instead of Qi at step i. This now

implies that Q✶ ❸ 3 ☎ Qi, and so overall we have shown that
➈

S ❸
➈

QPR 3 ☎ Q.

For the volumes, this gives✞✞✞↕S

✞✞✞ ↕
✞✞✞ ↕
QPR

3 ☎Q
✞✞✞ ↕ ➳

QPR

⑤3 ☎Q⑤ ✏ 3d
➳

QPR

✏ 3d
✞✞✞↕R

✞✞✞,
where the last equality holds owing to the pairwise-disjointness of R.

Using this, we can complete the proof of Lemma 6.

Proof of Lemma 6. As already explained, it suffices to construct functions gi that

have the desired properties approximately.

If y P A, then our assumption gives some Ny,i → i such that SNy,i
f♣yq → η. The

union of the sets ty P A : Ny,i ↕ Mi④2✉ is equal to A, so now let Mi be so large

that this set has measure at least µ♣Aq④2. Now, for each y P X , let its forward box

be the subset tTmy : m P rMis
d✉ of its orbit, and similarly let its backward box

be tT✁my : m P rMis
d✉.

Intuitively, if Mi is sufficiently large and m P rMis
d is far from the boundary of

this box, then we will also have

m� rNTmy,is
d ❸ rMis

d.

Let

Ki♣yq :✏
✥
m P rMis

d : Tmy P A and m� rNTmy,is
d ❸ rMis

d
✭
❸ rMis

d.

Given this, we apply the Basic Covering Lemma to the associated family of boxes

Sy,i :✏ tm� rNTmy,is
d : m P Ki♣yq✉

to obtain a pairwise-disjoint subfamily Ri♣yq such that✞✞✞↕Ri♣yq
✞✞✞ ➙ 3✁d

✞✞✞↕Si♣yq
✞✞✞.
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This, in turn, is at least 3✁d⑤Ki♣yq⑤, because
➈

Si♣yq contains the set of points

tm� ♣1, 1, . . . , 1q : m P Ki♣yq✉.

(It is also easy to see that all these sets may be selected measurably in y; we won’t

worry about this here).

Finally, let

gi♣xq :✏
1

Md
i

➳
nPrMisd

1➈Ri♣T✁nxq♣nq,

where 1➈Ri♣T✁nxq denotes the indicator function of the union of all the rectangles

R P Ri♣T
✁nxq, so

1➈Ri♣T✁nxq♣kq ✏

✧
1 if k P

➈
RPRi♣T✁nxq R

0 else.

This is an average of functions taking only the values 0 and 1, so certainly 0 ↕
gi ↕ 1. It remains to verify its nonzero inner product with f and its approximate

invariance.

Inner product with f . This follows from some re-arrangement:

①gi, f② ✏
1

Md
i

➳
nPrMisd

➺
X

f♣xq ☎ 1➈Ri♣T✁nxq♣nqµ♣dxq

✏
1

Md
i

➳
nPrMisd

➺
X

f♣Tnyq ☎ 1➈Ri♣yq♣nqµ♣dyq (change of vars)

✏

➺
X

1

Md
i

➳
nP
➈

Ri♣yq

f♣Tnyqµ♣dyq

➙

➺
X

1

Md
i

η
✞✞✞↕Ri♣yq

✞✞✞µ♣dyq,

because by construction each of the pairwise-disjoint boxes in the family Ri♣yq
is such that the resulting average of f over that box is at least η. Crucially, the

covering lemma has given us disjoint boxes, so summing over
➈

Ri♣yq is equiva-

lent to summing over each individual box and then adding the results (there is no

double-counting). Moreover, the covering lemma promises us that

✞✞✞↕Ri♣yq
✞✞✞ ✏ 3✁d⑤Ki♣yq⑤,
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so the above integral is at least

➺
X

3✁dη⑤Ki♣yq⑤

Md
i

µ♣dyq.

To turn this into a fixed lower bound, we need one more re-arrangement. Recalling

the definition of Ki♣yq, applying a crude lower bound and interchanging an integral

and sum we obtain that the above equals

➺
X

3✁dη

Md
i

✞✞✥m P rMis
d : Tmy P A and m� rNTmy,is

d ❸ rMis
d
✭✞✞µ♣dyq

➙

➺
X

3✁dη

Md
i

✞✞✥m P rMi④2s
d : Tmy P A and NTmy,i ↕ Mi④2

✭✞✞µ♣dyq

✏

➺
X

3✁dη

Md
i

➳
mPrMi④2sd

1tzPA: Nz,i↕Mi④2✉♣T
myqµ♣dyq

✏
η3✁d

Md
i

♣Mi④2q
dµ♣ty P A : Ny,i ↕ Mi④2✉q ➙ η6✁dµ♣Aq④2,

by our initial choice of Mi. This is positive and independent of i, as required.

Approximate invariance Finally, the approximate invariance of gi follows by

observing that

⑤gi ✆ Tp♣xq ✁ gi♣xq⑤

✏
✞✞✞ 1

Md
i

➳
nPrMisd

�
1➈Ri♣T✁n�pxq♣nq ✁ 1➈Ri♣T✁nxq♣nq

✟✞✞✞

✏
✞✞✞ 1

Md
i

➳
nP✁p�rMisd

1➈Ri♣T✁nxq♣n� pq ✁
1

Md
i

➳
nPrMisd

1➈Ri♣T✁nxq♣nq
✟✞✞✞

↕
✞✞✞ 1

Md
i

➳
nP♣✁p�rMisdq△rMisd

1➈Ri♣T✁nxq♣nq
✞✞✞

�
✞✞✞ 1

Md
i

➳
nP✁p�rMisd

�
1➈Ri♣T✁nxq♣n� pq ✁ 1➈Ri♣T✁nxq♣nq

✟✞✞✞

✏
✞✞✞ 1

Md
i

➳
nP♣✁p�rMisdq△rMisd

1➈Ri♣T✁nxq♣nq
✞✞✞

�
✞✞✞ 1

Md
i

➳
nP✁p�rMisd

�
1�➈

Ri♣T✁nxq✁p

✟
△
➈

Ri♣T✁nxq
♣nq

✟✞✞✞ :
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the first of these terms tends to zero as Mi ÝÑ ✽ uniformly in x because

⑤♣✁p� rMis
dq△rMis

d⑤

Md
i

✏ O
✁
⑤p⑤

Md✁1

i

Md
i

✠
,

and the second has integral in x that tends to zero by taking the sum over n outside

the integral, changing variables T✁nx ÞÑ x for each n separately and then applying

a similar estimate to each of the individual rectangles in the families Ri♣xq.

1.4 Ergodic Theorems for amenable groups

Both the Norm and Pointwise Ergodic Theorems can be extended to cover the

action of any group Γ that is amenable. Heuristically, this means that Γ contains

‘approximately invariant’ finite sets: to be precise, there is a sequence of finite

subsets F1 ❸ F2 ❸ . . . ❸ Γ such that
➈

N➙1
FN ✏ Γ and also such that for any

fixed γ P Γ we have

⑤FN△FNγ⑤

⑤FN ⑤
ÝÑ 0 as N ÝÑ ✽.

This is called a Følner sequence of subsets of Γ. Given such a Følner sequence, a

p.-p.s. T : Γñ ♣X, Σ, µq, and a function f P L1♣µq, we can ask whether

SNf :✏
1

⑤FN ⑤

➳
γPFN

f ✆ T γ

converges in norm or pointwise. Norm convergence always holds, and can be

proved similarly to our treatment of Zd. Pointwise convergence is again much

harder, and requires some additional conditions on the Følner sequence. However,

it is now known that for every amenable group and Følner sequence, there is some

Følner subsequence along these the above averages convergen pointwise a.e.. This

deep result was proved only recently by Linderstauss [Lin01].

All Abelian groups such as Zd are amenable (for example, take FN :✏ rN sd), and

there are also many non-Abelian examples. However, there are also many non-

amenable groups, such as free groups on two or more generators, and for these

there are ‘obvious’ versions of the ergodic theorem that can fail (see the exercises).
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Ergodic Theory

Notes 3: Topological systems and equidistribution

Having proved the basic ergodic theorems for Z
d-systems, here we will look at

some more concrete examples, and see how those theorems give new insights into

their behaviour. As an application, we will show how Weyl’s classical Polynomial

Equidistribution Theorem can be deduced from an analysis of a special dynamical

system.

1 Invariant measures for topological systems

Among dynamical systems that arise in science or in other parts of mathematics,

it is often more natural to endow them with a topological structure than a purely

measure-theoretic one. For example, many real-world dynamical systems are mod-

eled by flows on manifolds, where the topology is obvious but the presence of an

invariant measure may be less so.

Definition 1. If Γ is a countable group, then a topological Γ-system is a pair

♣X,T q in which X is a compact metric space and T is an action of Γ on X by

homeomorphisms.

Note that the compactness of X is a part of this definition.

Happily, for a topological Z
d-system on a compact metric space — enough

generality to cover a great many applications — one can always add some useful

measure-theoretic structure. This is contained in the following simple but impor-

tant theorem.

Theorem 2. If ♣X, T q is a topological Z
d-system, then X carries at least one

T -invariant Borel probability measure.

This was proved for single transformations (that is, d ✏ 1) by Krylov and

Bogolyubov in [KB37]. It actually holds for general amenable groups with essen-

tially the same proof as theirs; once again, I have adopted the setting Z
d-actions as

a middle road.
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Proof. Let x be any point of X , let δx the point-mass at x, and form the finite

averages

µN :✏
1

Nd

➳
nPrNsd

δTnx.

Each µN is a Borel probability measure on X supported on (at most) Nd points.

Moreover, these measures are approximately invariant as N ÝÑ ✽. Indeed, for

any fixed k P Z
d we have

Tk

✝ µN ✁ µN ✏
1

Nd

➳
nPrNsd

Tk

✝ δTnx ✁ µN

✏
1

Nd

➳
nPk�rNsd

δTnx ✁
1

Nd

➳
nPrNsd

δTnx

✏
1

Nd

➳
nP♣k�rNsdq△rNsd

δTnx.

After this cancellation, this is a sum of ⑤♣k � rN sdq△rN sd⑤ ✏ O♣⑤k⑤Nd✁1q point

masses, and it is normalized by Nd. Therefore, for any f P C♣Xq, we have

✞✞✞
➺

f d♣Tk

✝ µN ✁ µN q
✞✞✞ ↕ ⑥f⑥✽⑤k⑤

N
ÝÑ 0

as N ÝÑ ✽.

Since Pr♣Xq is sequentially compact in the vague topology, we may extract a

vaguely convergent subsequence ♣µNmqm➙1. Letting µ be its limit, this is still a

Borel probability measure on X , and it must now satisfy

➺
f d♣Tk

✝ µ✁ µq ✏ lim
mÝÑ✽

➺
f d♣Tk

✝ µNm ✁ µNmq ✏ 0

for all f P C♣Xq, so µ is T -invariant, as required.

With a little more work, we can enhance the above theorem to obtain an er-

godic invariant measure. We will not have an immediate use for this, and it does

require another piece of background from Banach space theory, but it seems worth

recording now.

They key is to consider the structure of the set of all invariant measures.

Lemma 3. Suppose that ♣X, T q is a topological Z
d-system and let PrT ♣Xq ❸

Pr♣Xq denote the set of T -invariant Borel probability measures on X . Then

PrT ♣Xq is a nonempty convex set, and it is compact for the vague topology.
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Proof. We have just proved that PrT ♣Xq is nonempty, and convexity follows eas-

ily: if µ1, µ2 P PrT ♣Xq and 0 ↕ α ↕ 1 then αµ1 � ♣1✁ αqµ2 satisfies:

♣αµ1 � ♣1✁ αqµ2q♣T
kAq ✏ αµ1♣T

kAq � ♣1✁ αqµ2♣T
kAq

✏ αµ1♣Aq � ♣1✁ αqµ2♣Aq ✏ ♣αµ1 � ♣1✁ αqµ2q♣Aq ❅A P B♣Xq, k P Z
d.

To prove vague compactness, since Pr♣Xq is vaguely compact, it suffices to

show that PrT ♣Xq is vaguely closed in Pr♣Xq. However, if µn P PrT ♣Xq con-

verges vaguely to µ P Pr♣Xq, then for any f P C♣Xq and k P Z
d we have

➺
f ✆ Tk dµ ✏ lim

nÝÑ✽

➺
f ✆ Tk dµn ✏ lim

nÝÑ✽

➺
f dµn ✏

➺
f dµ.

Hence Tk
✝ µ ✏ µ, and so µ P PrT ♣Xq, as required.

This proposition puts us into position to apply another classical result about

Banach spaces. Recall that, if E is a Banach space and K ⑨ E is a closed convex

subset, then ξ P K is an extreme point if it cannot be decomposed as

αξ1 � ♣1✁ αqξ2

with 0 ➔ α ➔ 1 and distinct ξ1, ξ2 P K. Less formally, this asserts that ‘ξ is not

an internal point of any line segment lying wholly in K’. For instance, if K is a

closed disk in R
2, then its extreme points are simply its boundary points; if it is a

closed square, then its extreme points are the four corners.

In this setting, a weak version of the Krein-Milman Theorem says that if, in

addition, K is compact for a strong, weak or (in case E is a dual Banach space)

weak✝ topology on E, then it must have some extreme points. This matters to us

because of the following.

Lemma 4. A probability measure µ P PrT ♣Xq is an extreme point of PrT ♣Xq if

and only if it is ergodic.

Proof. ♣ùñq If µ P PrT ♣Xq is not ergodic, then there is some invariant set

A P B♣Xq with 0 ➔ µ♣Aq ➔ 1. Let α :✏ µ♣Aq and define

µ1♣Bq :✏
1

µ♣Aq
µ♣B ❳Aq, µ2♣Bq :✏

1

µ♣X③Aq
µ♣B ❳ ♣X③Aqq ❅B P B♣Xq.

Each of these is a probability measure, and the invariance of A implies that each

is T -invariant. They are distinct, since µ1♣Aq ✏ 1 ✘ 0 ✏ µ2♣Aq, and for any

B P B♣Xq we have

µ♣Bq ✏ µ♣B ❳Aq � µ♣B ❳ ♣X③Aqq ✏ αµ1♣Aq � ♣1✁ αqµ2♣Aq.

3



So µ ✏ αµ1 � ♣1✁ αqµ2 and µ is not an extreme point.

♣ðùq Suppose that µ P PrT ♣Xq is ergodic and that it decomposes as

µ ✏ αµ1 � ♣1 ✁ αqµ2; we will show that this can happen only if µ1 ✏ µ2 ✏ µ.

If µ♣Bq ✏ 0 for some B P B♣Xq, then we must also have µ1♣Bq ✏ µ2♣Bq ✏ 0,

and so µ1, µ2 are both absolutely continuous with respect to µ. Therefore, by the

Radon-Nikodým Theorem, there are f1, f2 P L1♣µq such that fi ➙ 0,
➩
X

fi dµ ✏
1, and

µi♣Bq ✏

➺
B

fi dµ for B P B♣Xq.

Now the assumed T -invariance of each µi implies that

➺
B

fi ✆ Tk dµ ✏

➺
T✁kB

fi dµ ✏

➺
B

fi dµ ❅B P B♣Xq,

and hence that fi ✆Tk ✏ fi. Since µ is ergodic, this implies that both fis are µ-a.s.

constant. Now the condition that
➩
X

fi dµ ✏ 1 implies that their constant values

are 1, and hence that µi ✏ µ for i ✏ 1, 2, as required.

Corollary 5. If ♣X, T q is a topological Z
d-system, then X carries at least one

ergodic T -invariant Borel probability measure.

Proof. Theorem 2 gives that PrT ♣Xq is nonempty, and Lemma 3 gives that it is

convex and vaguely (✏ weak✝) compact. The Krein-Milman Theorem therefore

applies to give some extreme point µ P PrT ♣Xq, and now this is ergodic by the

preceding lemma.

Definition 6. The set of T -ergodic (equivalently, extreme) measures in PrT ♣Xq is

denoted by E♣PrT ♣Xqq.

Remark. In fact, the above line of reasoning can be taken much further. After a

slightly delicate argument to show that E♣PrT ♣Xqq is a Gδ-subset of PrT ♣Xq, one

can apply Chôquet’s Theorem to deduce that any µ P PrT ♣Xq has a decomposition

as an integral of ergodic invariant measures:

µ ✏

➺
Ω

µω ν♣dωq,

where ♣Ω,F , νq is some auxiliary probability space and the map Ω ÝÑ E♣PrT ♣Xqq :

ω ÞÑ µω is measurable in a suitable sense. This is the first step towards proving the

general ‘ergodic decomposition’ of an arbitrary p.p. system. We will return to this

decomposition from a different point of view later in the course. ⊳
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2 Generic points and unique ergodicity

Having found an invariant measure, the ergodic theorems give us a relation with

the ergodic averages of functions over orbits starting from individual points. In

order to discuss these we make the following definition.

Definition 7 (Generic points). If ♣X, T q is a topological Z
d-system and µ P PrT ♣Xq,

then a point x P X is generic for µ if

1

Nd

➳
nPrNsd

f♣Tnxq ÝÑ

➺
f dµ (1)

for every f P C♣Xq. (Thus, generic points are those that are ‘good’ for the Point-

wise Ergodic Theorem for all continuous functions.)

The Pointwise Ergodic Theorem tells us that for any one f P C♣Xq, the con-

vergence in (1) holds for µ-almost every x P X . However, it seems to be asking

much more that a point should give this convergence for every continuous function.

Nevertheless, if µ is ergodic, then there are always plenty of generic points.

Lemma 8. If ♣X,T q is a topological Z
d-system and µ P E♣PrT ♣Xqq, then the set

of generic points for µ is measurable and has full µ-measure.

Proof. First, recall that if X is compact with metric ρ, then the Banach space C♣Xq
is separable. This follows, for example, by first letting ♣xnqn➙1 be a countable

dense sequence in X , and then applying the Stone-Weierstrass Theorem to the

algebra of rational polynomial combinations of the functions

x ÞÑ ρ♣x, xnq.

Given this, let ♣fnqn➙1 be a countable dense sequence in C♣Xq, and, for each

n, let

Xn :✏
✦
x P X :

1

Nd

➳
nPrNsd

fn♣T
nxq ÝÑ

➺
fn dµ

✮
.

An easy exercise shows that this is measurable, and the Pointwise Ergodic Theorem

proves that it has full µ-measure. The countable intersection Y :✏
➇

n➙1 Xn still

has full µ-measure, and any generic point lies in Y . To finish the proof, we will

show that if x P Y then it is generic. Indeed, for any f P C♣Xq and ε → 0, there

is some fn with ⑥f ✁ fn⑥✽ ➔ ε④3, and now, since x P Xn, there is some N0 such
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that

N ➙ N0 ùñ
✞✞✞ 1

Nd

➳
nPrNsd

fn♣T
nxq ✁

➺
fn dµ

✞✞✞ ➔ ε④3

ùñ
✞✞✞ 1

Nd

➳
nPrNsd

f♣Tnxq ✁

➺
f dµ

✞✞✞

↕
✞✞✞ 1

Nd

➳
nPrNsd

fn♣T
nxq ✁

➺
fn dµ

✞✞✞� 2⑥f ✁ fn⑥✽ ➔ ε.

Since ε was arbitrary, this is the desired convergence.

A large part of modern dynamics is given over to understanding how additional

information about the topological system ♣X, T q constrains the possible invariant

measures that it can carry. The simplest kind of constraint is that this measure

should be unique.

Definition 9 (Unique ergodicity). A topological Z
d-system ♣X, T q is uniquely er-

godic if it has exactly one T -invariant measure.

Before turning to examples and applications, we give the important reformu-

lation of unique ergodicity in terms of generic points. In general, a topological

system with invariant measure µ may still have a nonempty µ-negligible subset of

points that are not generic for µ. However, it turns out that this always implies the

existence of another invariant measure on the space, as expressed in the following

result.

Theorem 10 (Generic points and unique ergodicity). For a topological Z
d-system

♣X,T q with an invariant measure µ, the following are equivalent:

• ♣X, T q is uniquely ergodic;

• strictly every x P X is generic for µ.

Proof. ♣ùñq This follows by re-applying the Krylov-Bogolyubov argument. If

any x P X were not generic for µ, then there would be some f P C♣Xq and some

integers N1 ➔ N2 ➔ . . . such that

1

Nd
m

➳
nPrNmsd

f♣Tnxq ÝÑ α ✘

➺
f dµ as m ÝÑ ✽.

By passing to a further subsequence if necessary, we could again assume that the

sequence of measures

µNm :✏
1

Nd
m

➳
nPrNmsd

δTnx

6



is vaguely convergent to some ν P Pr♣Xq, which would therefore be T -invariant,

by the same argument as before. On the other hand, it would also satisfy
➩
f dν ✏

α ✘
➩
f dµ, and hence ν ✘ µ. This would contradict the uniqueness of µ among

T -invariant probability measures.

♣ðùq If ν is any T -invariant probability measure, then we trivially have

➺
f dν ✏ lim

NÝÑ✽

1

Nd

➳
nPrNsd

✁ ➺
f♣Tnxq ν♣dxq

✠

✏

➺ ✁
lim

NÝÑ✽

1

Nd

➳
nPrNsd

f♣Tnxq
✠

ν♣dxq.

However, if strictly every x P X is generic for µ, then the limit inside the last

integral above converges to
➩
f dµ for every x, and so, by Lebesgue’s Dominated

Convergence Theorem, we obtain
➩
f dν ✏

➩
f dµ. Since f was arbitrary, this

implies ν ✏ µ.

3 Compact group rotations, generalizations and applications to

equidistribution

We now turn to our application: Furstenberg’s dynamical proof of the following

famous number-theoretic result:

Theorem 11 (Weyl’s Polynomial Equidistribution Theorem). Suppose that p♣Xq
is a real polynomial for which at least one coefficient other than the constant term

is irrational. Then the sequence of fractional parts

tp♣nq✉, n ✏ 1, 2, . . .

is equidistributed modulo 1: that is, for any 0 ↕ a ➔ b ↕ 1 we have

⑤t1 ↕ n ↕ N : a ↕ tp♣nq✉ ➔ b✉⑤

N
ÝÑ b✁ a as N ÝÑ ✽.

In fact, we will prove only the special case of Theorem 11 in which the leading

coefficient of p is irrational, leaving the extension to the general case as an exercise.

The treatment below is essentially taken from Section 3.3 in [Fur81]. The

crucial steps involve a study of unique ergodicity for a related topological system.

The full system of interest will be revealed shortly, but first we establish unique

ergodicity in a simpler example, which will then be used as a building block.
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The acting group will simply be Z throughout this subsection. Also, if α ✏
♣α1, . . . , αdq P T

d and m ✏ ♣m1, . . . ,mdq P Z
d, then we write

m ✌ α :✏ m1α1 �m2α2 � . . .�mdαd,

an element of T.

Proposition 12. Suppose that α1, α2, . . . , αd P T ✏ R④Z are irrational and ra-

tionally independent, meaning that for integers m1, m2, . . . , md we have

m1α1�m2α2� . . .�mdαd ✏ 0 mod 1 only if m1 ✏ m2 ✏ . . . ✏ md ✏ 0.

Let T : T
d ÝÑ T

d be the associated rotation transformation:

T ♣t1, t2, . . . , tdq :✏ ♣t1 � α1, t2 � α2, . . . , td � αdq.

Let m be the Haar probability measure (that is, Lebesgue measure) on T
d. Then

m is T -invariant, and T is uniquely ergodic.

Proof. Let α ✏ ♣α1, . . . , αdq, so that T is the rotation of T
d by α. For this system,

it is easier to analyse the pointwise averages of a function f P C♣Tdq than to

study some unknown invariant measure, so we will already see the usefulness of

Theorem 10. By that theorem, it suffices to prove that for any f P C♣Tdq and

t ✏ ♣t1, . . . , tdq P T
d we have

1

N

N➳
n✏1

f♣t� nαq ÝÑ

➺
Td

f♣sq ds,

where
➩
☎ds denotes integration with respect to m.

By the Weierstrass Approximation Theorem, any f P C♣Tdq may be uniformly

approximated by trigonometric polynomials of the form

g♣t1, . . . , tdq ✏

p➳
j✏1

cje
2πi♣mj,1t1�☎☎☎�mj,dtdq ✏

p➳
j✏1

cje
2πimj✌t

for some coefficients cj P C and integers mj,r, 1 ↕ j ↕ p, 1 ↕ r ↕ d. Clearly

we may assume that the integer vectors mj :✏ ♣mj,1, . . . ,mj,dq are all distinct.

Also, by re-labeling and introducing a zero term if necessary, we may assume that

m1 ✏ 0. It therefore suffices to prove the above convergence for such functions g.
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This now follows by elementary calculations. Substituting this formula for g

into the pointwise averages starting from t and re-arranging gives

1

N

N➳
n✏1

g♣t� nαq ✏

p➳
j✏1

cj

✁ 1

N

N➳
n✏1

e2πi♣mj✌t�n♣mj✌αqq
✠

✏

p➳
j✏1

cje
2πimj✌t

✁ 1

N

N➳
n✏1

♣e2πimj✌αqn
✠
.

These last inner averages may now be evaluated as geometric series. As N ÝÑ ✽,

they behave as O♣ 1
N

1
⑤1✁exp♣2πimj✌αq⑤

q, and so tend to 0 unless mj ✌ α ✏ 0. By our

assumptions on α, this is possible only if mj ✏ 0, and therefore

1

N

N➳
n✏1

g♣t� nαq ÝÑ c1 as N ÝÑ ✽

for strictly every t P T
d. On the other hand,

➺
Td

g♣sq ds ✏

p➳
j✏1

cj

➺
Td

e2πimj✌s ds ✏ c1,

since

mj ✘ 0 ùñ

➺
Td

e2πimj✌s ds ✏ 0.

This gives our first instance of unique ergodicity. To recover the full Polyno-

mial Equidistribution Theorem, we will need a significant generalization of the

above result. First we need another definition, which has a wider importance

throughout ergodic theory.

Definition 13 (Skew-product transformation). Suppose that ♣Y,Φq is a measurable

space, that T ñ Y is an invertible measurable transformation, that G is a compact

metric group, and that σ : Y ÝÑ G is a measurable function. Then the skew

product of T by σ is the transformation T ✡ σ ñ Y ✂G defined by

♣T ✡ σq♣y, gq :✏ ♣Ty, σ♣yqgq.

The function σ is referred to as the cocycle of this transformation (for reasons

which relate to the extension of this definition to actions of more complicated

groups).

This new system is the topological skew product if ♣Y, T q is a topological sys-

tem and σ is a continuous function.
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A quick calculation now gives that the map T ✡ σ is a measurable transforma-

tion of Y ✂G with inverse given by

♣T ✡ σq✁1 ✏ T✁1 ✡ σ♣✁1q,

where σ♣✁1q♣yq :✏ σ♣T✁1yq✁1, and that the higher iterates of T ✡ σ are given by

♣T ✡ σqn ✏ Tn ✡ σ♣nq,

where

σ♣nq♣yq :✏ σ♣Tn✁1yq ☎ σ♣Tn✁2yq ☎ ☎ ☎ ☎ ☎ σ♣yq.

If T preserves a probability ν on Y , then T ✡ σ preserves the product measure

ν ❜ m, where m is the Haar probability measure on G. If T ✡ σ is a topological

skew product, then it defines a homeomorphism of Y ✂G.

A nice way to think about skew-products is as a generalization of group rota-

tions so that they are ‘relative’ to another base system ♣Y,B♣Y q, ν, T q. The trans-

formation T ✡ σ acts as a group rotation on each vertical fibre of Y ✂ G, but it

also (i) moves fibres around, according to the movement of the points of Y under

T , and (ii) rotates the fibres over different base points y P Y by different rotations,

as given by the function σ♣yq.
With this in mind, it is possibly not surprising that there is a ‘relative’ variant

of Proposition 12, too.

Proposition 14. Suppose that ♣Y, T q is a uniquely ergodic topological system with

invariant probability ν, that σ : Y ÝÑ G is continuous, and that ν ❜m is ergodic

for the skew product T ✡ σ. Then in fact the skew product is uniquely ergodic.

Proof. Step 1 If ♣y, gq P Y ✂ G is generic for ν ❜ m, then so are all the

‘fibrewise rotates’ ♣y, ghq. To see this, let f P C♣Xq, and define

fh♣y, gq :✏ f♣y, ghq.

This is still an element of C♣Xq, so the genericity of ♣y, gq for ν ❜m gives

1

N

N➳
n✏1

f♣Tn, σ♣nq♣yqghq ✏
1

N

N➳
n✏1

fh♣T
ny, σ♣nq♣yqgq

ÝÑ

➺
Y ✂G

fh♣y
✶, g✶q ν♣dy✶qm♣dg✶q

✏

➺
Y ✂G

f♣y✶, g✶hq ν♣dy✶qm♣dg✶q

✏

➺
Y ✂G

f♣y✶, g✶q ν♣dy✶qm♣dg✶q,

10



where the last equality holds because the measure m is rotation-invariant on G, and

so integrating a function of g✶h over m♣dg✶q is the same is simply intregrating the

same function of g✶ over m♣dg✶q.

Step 2 The above shows that the set of points in Y ✂G that are generic for

µ :✏ ν ❜m does not depend on the second coordinate, so we may write this set as

A ✂ G for some measurable A ❸ Y . On the other hand, since ν ❜m is ergodic,

almost every point is generic for it, and so we must have ν♣Aq ✏ 1.

Suppose that µ✶ is a ♣T ✡ σq-invariant probability measure; we must show that

µ✶ ✏ µ. The projection of µ✶ onto Y is certainly T -invariant, so since T is uniquely

ergodic this projection of µ✶ must equal ν. This implies that µ✶♣A✂Gq ✏ ν♣Aq ✏
1, and hence that µ✶-a.e. point is actually generic for µ. Now we applying the

Pointwise Ergodic Theorem and the Lebesgue Dominated Convergence Theorem

as in the proof of Proposition 12: for any f P C♣Y ✂Gq, we have

➺
Y✂G

f dµ✶ ✏

➺
Y✂G

✁
lim

NÝÑ✽

1

N

N➳
n✏1

f♣♣T ✡ σqn♣y, gqq
✠

µ✶♣dy, dgq

✏

➺
Y✂G

✁ ➺
Y✂G

f dµ
✠

µ✶♣dy, dgq (by genericity for µ)

✏

➺
Y✂G

f dµ.

Hence that µ✶ ✏ µ, as required.

In view of this proposition, we can now obtain many more examples of uniquely

ergodic topological systems by iterating the skew-product construction. Provided

we start with a base system that is uniquely ergodic (such as one of the torus rota-

tions of Proposition 12), at each subsequent step we need only show that the prod-

uct measure is ergodic, and then the above proposition promises that it is uniquely

ergodic. The following example is of this kind.

Corollary 15. Suppose that α is irrational, and let T ñ T
d be given by

T ♣t1, t2, . . . , tdq :✏ ♣t1 � α, t2 � t1, . . . , td � td✁1q.

Then the Haar measure md on T
d is invariant and uniquely ergodic for T .

Proof. The proof is by induction on d. For the base case d ✏ 1 this is simply a

one-dimensional special case of Proposition 12, so suppose now that d → 1 and

that the result has already been proved for d✁ 1.

11



In this case we can write T ✏ S ✡ σ, where S : T
d✁1 ÝÑ T

d✁1 is the

analogous transformation of one dimension less, and

σ♣t1, t2, . . . , td✁1q :✏ td✁1.

By the inductive hypothesis, we know that md✁1 is uniquely ergodic for S, so by

Proposition 14 we need only prove that md✁1 ❜m1 ✏ md is ergodic (rather than

uniquely ergodic) for T .

To this end, suppose that f ✏ f ✆ T for some f P L2♣mdq; we will show that

f must be constant md-a.s. This can be done using basic Fourier analysis on the

torus T
d. Expanding f as a Fourier series gives

f♣tq :✏
➳

mPZd

ame2πim✌t,

and hence

f♣Ttq :✏
➳

mPZd

ame2πim✌Tt.

Now a simple calculation gives

m ✌ Tt ✏ m1α�m1t1 �m2♣t1 � t2q � ☎ ☎ ☎ �md♣td✁1 � tdq

✏ m1α� ♣m1 �m2qt1 � ♣m2 �m3qt2 � ☎ ☎ ☎ � ♣md✁1 �mdqtd✁1 �mdtd,

and so equating the Fourier series for f and f ✆ T gives

➳
mPZd

ame2πim✌t

✏
➳

mPZd

e2πim1αame2πi♣♣m1�m2qt1�♣m2�m3qt2�☎☎☎�♣md✁1�mdqtd✁1�mdtdq.

Since the coefficients in these series are unique, this requires that

a♣m1�m2,...,md✁1�md,mdq ✏ e2πim1αam

ùñ ⑤a♣m1�m2,...,md✁1�md,mdq⑤ ✏ ⑤am⑤

for all m P Z
d.

However, because f is square-integrable, by Parseval’s Theorem its Fourier

coefficients are square-summable:
➦

mPZd ⑤am⑤
2 ➔ ✽. In light of this, consider

the orbits of the linear transformation

♣m1, m2, . . . ,mdq ÞÑ ♣m1 �m2, m2 �m3, . . . ,mdq.
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The penultimate terms of the resulting orbit of vectors progress as md✁1, md✁1 �
md, md✁1 � 2md, . . . , and so are all distinct unless md ✏ 0. It therefore follows

that am ✏ 0 whenever md ✘ 0, for otherwise the associated orbit would give an

infinitude of summands within
➦

mPZd ⑤am⑤
2 all of the same nonzero magnitude.

Hence,

f♣tq ✏
➳

♣m1,m2,...,md✁1qPZd✁1

a♣m1,m2,...,md✁1,0qe
2πi♣m1t1�☎☎☎�md✁1td✁1q,

so f a.s. does not depend on the coordinate td. This means it is lifted from a

function on the system ♣Td✁1,B♣Td✁1q, md✁1, Sq. Since that system is ergodic

by the inductive hypothesis, the invariance of f implies that it must be constant

m-a.s., as required.

Proof of Theorem 11. Let our polynomial be

p♣Xq ✏ adX
d � ad✁1X

d✁1 � . . .� a0.

Assume that ad is irrational, and hence so is ad④d!. Now apply Corollary 15 to the

transformation

T ♣t1, t2, . . . , tdq :✏ ♣t1 � ad④d!, t2 � t1, . . . , td � td✁1q.

This T is uniquely ergodic by that theorem, and hence by Theorem 10 every point

of T
d is generic for T .

Now, a simple calculation shows that if we define

pd♣Xq :✏ p♣Xq,

pd✁1♣Xq :✏ pd♣X � 1q ✁ pd♣Xq,

pd✁2♣Xq :✏ pd✁1♣X � 1q ✁ pd✁1♣Xq,

. . . ,

p1♣Xq :✏ p2♣X � 1q ✁ p2♣Xq,

then each pi is a polynomial of degree i, p1♣Xq ✏ ♣ad④d!qX , and we have

Tn♣p1♣0q, p2♣0q, . . . , pd♣0qq ✏ ♣p1♣nq, p2♣nq, . . . , pd♣nqq mod 1.

Since the point ♣p1♣0q, . . . , pd♣0qq must be generic for Haar measure, it follows

that for any continuous function of only the last coordinate, say f♣tdq, we have

1

N

N➳
n✏1

f♣p♣nq mod 1q ✏
1

N

N➳
n✏1

f♣Tn♣p1♣0q, . . . , pd♣0qq mod 1q ÝÑ

➺
T

f♣sq ds.
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This is the required equidistribution, except that f is a continuous function, whereas

Weyl’s result asks us to work instead with the indicator function 1ra,bq. To repair

this we simply observe that for any ε → 0 there are r0, 1s-valued continuous func-

tions f1, f2 with f1 ↕ 1ra,bq ↕ f2 and
➩
⑤f2 ✁ f1⑤dmT ➔ ε, and so since we know

equidistribution for these functions we obtain

➺
T

f1♣sq ds ↕ lim inf
NÝÑ✽

⑤t1 ↕ n ↕ N : a ↕ tp♣nq✉ ➔ b✉⑤

N

↕ lim sup
NÝÑ✽

⑤t1 ↕ n ↕ N : a ↕ tp♣nq✉ ➔ b✉⑤

N
↕

➺
T

f2♣sq ds,

where the left- and right-hand expressions here straddle the value
➩
T

1ra,bq ✏ b✁ a

and differ by at most ε. Since ε was arbitrary, the liminf and limsup must in fact

both equal b✁ a, as required.

For the general case of Theorem 11, if instead ai is irrational but ad, ad✁1, . . . ,

ai�1 are not, then one may reduce to the case of irrational leading coefficient as

follows. Let r ➙ 1 be some integer such that each raj is also an integer for all

j ✏ i � 1, . . . , d. Then the equidistribution of tp♣nq✉ clearly follows if we know

it for each of the individual sequences tp♣rn � bq✉, b ✏ 0, 1, . . . , r ✁ 1, and for

each such b one may re-arrange this latter problem so that it does not involve the

coefficients in degrees i� 1, . . . , d. This last step is left as an exercise.
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Ergodic Theory

Notes 4: The ‘arithmetic’ of systems, and notions of mixing

1 The ‘arithmetic’ of systems

1.1 Factors

It is high time we met the principal notion of a ‘morphism’ between p.-p.s.s. This

can be explained in two different ways.

Definition 1 (Factors). If pX,Σ, µ, T q is a p.-p. Γ-system, then a factor of it is a

σ-subaglebra Ξ ¤ Σ which is globally T -invariant, meaning that, for each γ P Γ,

B P Ξ ðñ T γpBq P Ξ.

Definition 2 (Factor maps). If pX,Σ, µ, T q and pY,Φ, ν, Sq are p.-p. Γ-systems,

then a factor map from the first to the second is a measurable map π : X ÝÑ Y

such that

• (measures agree) π�µ � ν;

• (intertwining property) π � T γpxq � Sγ � πpxq for µ-a.e. x P X for every

γ P Γ.

If π is a factor map as above, then the pre-image σ-algebra

π�1pΦq :� tπ�1pAq : A P Φu ¤ Σ

is a factor of pX,Σ, µ, T q. A factor map π : pX,Σ, µ, T q ÝÑ pY,Φ, ν, Sq may be

thought of as ‘simulating’ its target system using a ‘part’ of the domain system1.

Moreover, it turns out that all factors actually come from factor maps modulo

negligible sets, so in this sense the above notions are equivalent. We will now

1although beware that this may not correspond to the target being ‘smaller’ than the domain

system in any rigorous sense, just as a proper surjection between infinite sets does not imply that

they have different cardinality
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use some new notation. If pX,Σ, µq is a probability space and Ξ,Φ ¤ Σ are σ-

subalgebras, then Ξ and Φ agree up to negligible sets, written Ξ � Φ mod µ, if

for every A P Ξ there is some B P Φ such that µpA△Bq � 0, and vice-versa. For

instance:

• our definition of pX,Σ, µq being countably generated up to negligible sets

asserted that Σ � Σ0 mod µ for some countably generated Σ0 ¤ Σ;

• on the unit interval r0, 1s, the σ-algebra of all Lebesgue-measurable sets

agrees with the Borel σ-algebra up to Lebesgue-negligible sets.

Proposition 3 (Existence of spatial models). If pX,Σ, µ, T q is a p.-p. Γ-system

and Φ ¤ Σ is a factor, then there are

• a topological Γ-system pY, Sq,
• an S-invariant Borel probability measure ν on Y ,

• and a factor map of p.-p. systems

π : pX,Σ, µ, T q ÝÑ pY,BpY q, ν, Sq

such that Φ � π�1pBpY qq mod µ.

Proof. Step 1. First we will show that for any factor Φ ¤ Σ is agrees with a

countably generated factor up to negligible sets. Let A1, A2, . . .P Σ be a sequence

which is in dense the measure algebra of pX,Σ, µq, and for each i let fi P L1pµ|Φq
be some choice of function representing the conditional expectation Ep1Ai

|Φq (re-

call that conditional expectations are unique only up to agreement almost every-

where). Now let Φ0 be the σ-algebra generated by all of the rational level sets of

the functions fi � T γ for i ¥ 1 and γ P Γ:

Φ0 :� σ-alg
� tx : fipT γxq ¤ qu : i ¥ 1, γ P Γ, q P Q

(�
.

This Φ0 is clearly globally T -invariant, since it is generated by a globally T -

invariant collection of sets, and it is contained in Φ. On the other hand, for any

A P Φ and ε ¡ 0 there is some Ai P Σ such that µpA△Aiq   ε, and since

A P Φ this implies that }1A � fi}1   ε. Hence A must be within ε of the level set

tfi ¤ 1{2u, and so any A P Φ may be approximated in measure by elements of

Φ0. Letting Bi be a sequence of such approximants in Φ0 with µpA△Biq   2�i,

we see that B :� �
j¥1

�
i¥j Bi still lies in Φ0 and has µpA△Bq � 0, as required.

Step 2. Suppose now that A1, A2, . . . is a dense sequence in (the measure

algebra of) Φ.

2



Let Y :� t0, 1uΓ�N with its product topology and σ-algebra (bearing in mind

that Γ is countable, so this product topology is metrizable). Define φ : X ÝÑ Y

by

φpxq :� �
1Ai

pT γpxqq�
pγ,iqPΓ�N

.

We also equip Y with the right-coordinate-shift action of Γ:

Sλ
�pxγ,iqγ,i� :� pxγλ,iqγ,i,

and simply define ν :� φ�µ. It is clear that φ�1pBpY qq is the σ-algebra generated

by the sets Ai and their shifts, and hence is exactly Φ. Therefore, to prove that φ

is the desired factor map, it remains to show that it intertwines the actions. This

follows by definition because

φpT λpxqq :� �
1Ai

pT γpT λpxqqq�
γ,i

� �
1Ai

pT γλpxqq�
γ,i

�: Sλ
��

1Ai
pT γpxqq�

γ,i

�
,

as required.

Definition 4 (Extensions). If π : pX,Σ, µ, T q ÝÑ pY,Φ, ν, Sq is a factor map,

then we also write that pX,Σ, µ, T q is an extension of pY,Φ, ν, Sq through π.

In the special case Ξ � Σ, Proposition 3 gives something called a compact

model:

Corollary 5. For any p.-p. Γ-system pX,Σ, µ, T q there are a topological Γ-system

pY, Sq, a measure ν P PrSpY q and a measurable map π : pX,Σq ÝÑ pY,BpY qq
which has π�µ � ν, intertwines the actions T and S and is such that any A P Σ

differs by a negligible set from some π�1pBq.
The importance of this corollary is that if we have some question about p.-p.s.

which involves only the properties of sets up to negligible sets, or of functions up

to a.e. equality, then without loss of generality we can always assume that our

system is defined by homeomorphisms on some compact metric space. We will

occasionally make important use of this assumption in the sequel.

Corollary 6 seems close to asserting that π defines an isomorphism of p.-p. Γ-

systems pX,Σ, µq ÝÑ pY,BpY q, νq, in the sense explained in Lecture 1. The dif-

ference is that a true isomorphism should have a measurable inverse a.e., whereas

Corollary 6 gives only the apparently-weaker conclusion that all measurable sub-

sets of X are pull-backs of subsets of Y , up to negligible sets.

For a general countably generated measurable space pX,Σq, the weaker con-

clusion need not imply the stronger. However, for standard Borel spaces, they are

equivalent. (This measure-theoretic fact will not be proved in the present notes.)
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Corollary 6. If pX,Σ, µ, T q is a p.-p. Γ-system defined on a standard Borel space,

then it is isomorphic as a p.-p. system to to a topological Γ-system with an invariant

measure.

A simple use of Corollary 6 also gives a model for factor maps:

Proposition 7. If φ : pX1,Σ1, µ1, T1q ÝÑ pX0,Σ0, µ0, T0q is a factor map, and

π0 : pX0,Σ0, µ0, T0q ÝÑ pY0,BpY0q, ν0, S0q is a compact model, then we can find

a compact model π1 : pX1,Σ1, µ1, T1q ÝÑ pY1,BpY1q, ν1, S1q and a continuous

factor map ψ : Y1 ÝÑ Y0 such that the following diagram commutes:

X1

φ

��

π1
// Y1

ψ

��

X0 π0

// Y0.

Proof. Corollary 6 gives us a provisional compact model π1 : pX1,Σ1, µ1, T1q ÝÑ
pY 1,BpY 1q, ν1, S1q. We now enhance this to a larger model by defining Y1 :�
Y0 � Y 1,

π1 : X1 ÝÑ Y0 � Y 1 : x ÞÑ pπ0pφpxqq, π1pxqq,
and ν1 :� π1�µ. Finally, let ψ : Y1 ÝÑ Y0 be the projection onto the first coordi-

nate. The required properties follow at once.

Remark. One of the important general problems of ergodic theory is the ‘realiza-

tion problem’. The above results show how a compact metric model can be found

for a general p.-p.s., and the realization problem asks what more we can demand

from these compact models. For instance, can we express a general Z-system as

1. a compact model system pY,BpY q, ν, Sq with S being uniquely ergodic, or

2. a system comprising a diffeomorphism of a smooth compact manifold M

and an invariant measure that is given by a smooth density on M?

It is a deep theorem of Jewett and Krieger that the answer to question 1 is Yes;

we will discuss some related constructions towards the end of the course. At time

of writing, question 2 remains one of the most famous open problems of ergodic

theory. ⊳

Let us also quickly mention a very important kind of factor which will re-

appear later. Suppose that T : Γñ pX,Σ, µq and that ΛEΓ is a normal subgroup.

If A P Σ is such that T λpAq � A for all λ P Λ, then for any γ P Γ we have

T λpT γpAqq � T γpT γ�1λγpAqq � A @λ P Λ,

4



since by assumption γ�1Λγ � Λ. Hence the σ-subalgebra

ΣTæΛ :� tA P Σ : T λpAq � A @λ P Λu
is globally T -invariant.

Definition 8. The factor ΣTæΛ is called the Λ-partially invariant factor of pX,Σ, µ, T q.

1.2 Joinings and disjointness

Factors give us a notion of ‘parts’ of a given p.-p.s.. It can also be important to

study ways in which new, ‘larger’ systems can be built up from given ingredients.

Definition 9. Given two p.-p. Γ-systems pX,Σ, µ, T q, pY,Φ, ν, Sq, a joining of

them is a third system pZ,Ξ, θ, Rq together with factor maps

pZ,Ξ, θ, Rq
π

wwooooooooooo
ψ

''OOOOOOOOOOO

pX,Σ, µ, T q pY,Φ, ν, Sq,
such that the new σ-algebra Ξ is generated up to negligible sets by π�1pΣq and

ψ�1pΦq (so we cannot find a proper factor of pZ,Ξ, θ, Rq with respect to which

both factor maps π and ψ are still measurable).

Joinings of larger collections of systems are defined similarly.

Joinings were introduced into ergodic theory in Furstenberg’s classic paper [Fur67],

which still makes delightful reading. It can often be helpful to have the following

more concrete picture of a joining in mind, whose proof requires only routine ver-

ifications.

Proposition 10. Given a joining of two p.-p.s.s

pZ,Ξ, θ, Rq
π

wwooooooooooo
ψ

''OOOOOOOOOOO

pX,Σ, µ, T q pY,Φ, ν, Sq,
the map φ : Z ÝÑ X � Y : z ÞÑ pπpzq, ψpzqq is measurable for the product σ-

algebra Σb Φ, it intertwines the actions R and T � S, and the resulting measure

λ :� φ�θ is pT � Sq-invariant and has first and second marginals equal to µ and

ν:

λpA�Xq � µpAq, λpX �Bq � νpBq.
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Thus, given the systems pX,Σ, µ, T q and pY,Φ, ν, Sq, there is a canonical way

to model a joining of them on the space X �Y . Often a measure with marginals µ

and ν and invariant under T � S is itself referred to as a joining of these two sys-

tems. This also makes contact with the notion of ‘coupling’ in probability theory.

In ergodic-theoretic uses of joinings, the emphasis is crucially on the pT � Sq-
invariance of λ.

This picture also makes it clear that any two systems always have at least one

joining: the simple Cartesian product:

pX,Σ, µ, T q � pY,Φ, ν, Sq :� �
X � Y,Σb Φ, µb ν, pT γ � SγqγPΓ

�
.

In fact, with the use of factor maps we can also introduce a considerable gen-

eralization of this construction, calling on the following fact from measure theory:

Proposition 11 (Measure disintegration). Suppose that φ : X ÝÑ Y is a Borel

map between compact metric spaces, that µ is a Borel probability measure on X

and that ν � φ�µ is the pushforward measure of µ on Y . Then there is a function

Y Q y ÞÑ µy P PrpXq

into the space of Borel probability measures on X with the property that for any

A P PrpXq the function

Y Q y ÞÑ µypAq P R

is Borel measurable, we have

µpAq �
»
Y

µypAqφ�νpdyq,

and µy is supported on φ�1tyu for almost every y P Y . The above integral ex-

pression for µ is referred to as its disintegration over φ, and the individual fibre

measures µy as its disintegrands. The disintegration is essentially unique, in that

if y ÞÑ µ1y is another disintegration then µy � µ1y for ν-a.e. y.

Now, given a continuous factor map of compact models of systems

π : pX,Σ, µ, T q ÝÑ pY,Φ, ν, Sq,

let µ � ³
Y
µy νpdyq be the disintegration of µ over π. Owing to the essential

uniqueness of the disintegration, we must have T
γ
� µy � µSγy for ν-a.e. y. Now

we form the new fibred product set X̃ :� tpx, x1q P X2 : πpxq � πpx1qu � X2,

which is easily seen to be closed, and is pT�T q-invariant because π is a factor map.
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We give X̃ its Borel σ-algebra, and on it we put the relative product measure

defined by

µbπ µpAq :�
»
Y

pµy b µyqpAq νpdyq for A P BpX̃q.

This is easily seen to be a Borel probability measure on X̃ , and the property that

T
γ
� µy � µSγy implies that µ bπ µ is invariant under T � T . Finally the two

coordinate projections πi : X̃ ÝÑ X , i � 1, 2, both push µ bπ µ back onto µ,

so considered as factor maps these witness pX̃,BpX̃q, µbπ µ, T � T q as a joining

of two copies of pX,Σ, µ, T q, whose construction gives the important additional

property that π � π1 � π � π2, and hence the commutative diagram

X̃
π1

��~~
~~

~~
~

π2

��
@@

@@
@@

@

X

π
  A

AA
AA

AA
A X

π
~~}}

}}
}}

}}

Y.

An equivalent description of the relative product measure µbπ µ is that for any

bounded measurable functions f, g : X ÝÑ R, one has

»
X̃

fpxqgpx1q pµbπ µqpdpx, x1qq �
»
X

Epf |π�1pΦqqEpg |π�1pΦqqµpdxq.

1.3 Inverse limits

The final construction we record here is that of inverse limits. Suppose that we

have a whole sequence of Γ-systems pXn,Σn, µn, Tnq for n ¥ 0, all of them

compact models, together with connecting maps: continuous factor maps πn :

pXn�1,Σn�1, µn�1, Tn�1q ÝÑ pXn,Σn, µn, Tnq, which we may visualize as a

tower

� � � ÝÑ X3

π2ÝÑ X2

π1ÝÑ X1

π0ÝÑ X0.

(Note that given a tower of abstract systems and factor maps, an inductive applica-

tion of Proposition 7 will give us compact models and continuous maps as here.)

Proposition 12. In this situation, there are a compact model Γ-system pX,Σ, µ, T q
together with a sequence of continuous factor maps φn : X ÝÑ Xn such that

• (the factors are consistent) πn � φn�1 � φn for all n ¥ 0, and
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• (the factors generate everything) Σ is generated up to negligible sets by its

factors φ�1
n pΣnq.

Moreover, this new system is essentially unique, in that given any other system

pY,Φ, ν, Sq and factor maps ψn : Y ÝÑ Xn such that πn � ψn�1 � ψn for all n,

there is a factor map α : Y ÝÑ X with ψn � φn � α for all n. In particular, the

σ-algebra Σ is generated by the sequence of σ-subalgebras φ�1
n pΣnq.

Proof. Let

X :� tpxnqn¥1 : πnpxn�1q � xn @n ¥ 0u.
Since we have chosen to work with compact models, this space is a decreasing

intersection of compact subsets of X1 � X2 � � � � , and so is itself a nonempty

compact subset of this product.

For m ¡ n ¥ 0, let πm,n :� πn � πn�1 � � � � � πm�1 : Xm ÝÑ Xn, so

πn � πn�1,n for each n. These are all still factor maps. Now, for each n, define

νn P PrpX0 �X1 � � � � �Xnq to be the pushforward of µn under the map

x ÞÑ �
πn,0pxq, . . . , πn,n�2pxq, πn,n�1pxq, x

�
,

so that this is a measure on the projection of X onto its first n coordinate factors.

By taking a weak� limit we can extract from these a measure on X: for example,

by picking a reference point py0, y1, . . .q P X1 � X2 � � � � , we may form the

products νn b δpyn�1,yn�2,...q P PrpX1 �X2 � � � � q, and now these converge to a

weak� limit µ P PrpXq which is concentrated on X , because by the consistency

among the µn these product measures eventually agree on any finite collection of

coordinates in X1 �X2 � � � � . Now if we define

φn : X ÝÑ Xn : px0, x2, . . .q ÞÑ xn

then φn�µ � µn, and because of the definition of X we also have πn �φn�1 � φn.

Also, if we define T : Γ ñ pX,BpXq, µq by T γ � T
γ
1
� T

γ
2
� � � � , then each φn

intertwines T with Tn.

Finally, suppose that pY,Φ, ν, Sq and ψn : Y ÝÑ Xn are as posited, and define

α : Y ÝÑ X by

αpyq :� pψ0pyq, ψ1pyq, . . .q.
The assumption that πn�ψn�1 � ψn implies that αpyq P X for all y, and moreover

it is clear by definition that α intertwines S with T (since this holds coordinate-wise

inX) and that α�ν agrees with µ on any finite-dimensional projection ofX , so that

in fact α�ν � µ.

Definition 13 (Inverse limit). The system pX,Σ, µ, T q together with the factor

maps pφnqn¥0 is the inverse limit of the tower of systems pXn,Σn, µn, Tnq, pπnqn¥0.
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Figure 1: Sometimes, shape may be retained as well as size

A

T  A
T  A

γ
λ

Figure 2: In other cases, shapes can become increasingly distorted

2 Weak and strong mixing

Two strengthenings of ergodicity, ‘weak’ and ‘strong mixing’, have emerged over

time as important determiners of many different features of how a p.-p.s. behaves.

We will now introduce these and begin to explore their basic properties.

In order to introduce the kinds of phenomenon that interest us, imagine a p.-

p.s. (or single transformation, if you like) T : Γ ñ pX,Σ, µq, together with some

subset A P Σ with 0   µpAq   1, and suppose further that we have some natural

way of visualizing the space X , say as a blob with A inside it as a smaller blob.

Now run the dynamics, and consider the images T γipAq for some sequence

pγiqi in Γ which tends to 8: that is, which eventually leaves every finite subset of

Γ. This is a sequence of sets of measure µpAq, because T preserves µ, but apart

from that we know very little.

It could be that in some sense these images of A retain some features of their

shape, as well as their size, as in Fig 2. On the other hand, it could be that, as

γi ÝÑ 8, the ‘shapes’ of our image sets become more and more distorted, so that

although their measures all equal µpAq, they spread that measure around the space

X in an increasingly ‘complicated’ way, as in Fig 3.

Of course, we have not given rigorous meaning to the words ‘shape’ and ‘com-
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plicated’ here. Nevertheless, it turns out that one can give a precise form to these

two intuitively-opposed possibilities. Perhaps the simplest way to do this for a

given ergodic system T : Γ ñ pX,Σ, µq is to ask about the behaviour of pairs

of points px, yq P X2. The idea is that in a system of the first kind above, where

some sense of ‘shape’ is preserved, knowing the position of the T γ-image of one

point places some constraints on the T γ-images of other points, whereas in a sys-

tem of the second kind most pairs of distinct points will ultimately appear to be

moving independently. The following definition gives a precise way to capture this

intuition.

Definition 14 (Weak mixing). A p.-p.s. T : Γñ pX,Σ, µq is weakly mixing if the

product system T � T : Γñ pX �X,Σb Σ, µb µq is ergodic.

The following is worth noting at once:

Lemma 15. Weak mixing implies ergodicity.

Proof. If A P Σ is T -invariant, then A�X P ΣbΣ is pT � T q-invariant and has

µb2pA�Xq � µpAq.
As our first intuitive situation above suggests, however, the reverse of this im-

plication is false, as is witnessed by compact group rotations.

Example. Let α P T be irrational (that is, the image in R{Z of an element of RzQ),

and let Rα : T ÝÑ T be the resulting circle rotation. We have seen in Lecture

3 that Rα is uniquely ergodic, with Lebesgue measure m being the only invariant

measure.

However, pT,BpTq,m,Rαq is not weakly mixing. Indeed, for any A P BpTq,
the diagonal set

A1 :� tps, tq P T2 : t� s P Au
is pRα�Rαq-invariant and has measure mpAq, which could be any value in r0, 1s.

A slight generalization of this shows that for any acting group Γ, nontrivial

compact group rotations are never weakly mixing. More generally still, if G is

a compact metric group, φ : Γ ÝÑ G is a homomorphism and H ¤ G is a

proper closed subgroup, then we can also define the rotation action Rφ on the

compact homogeneous space G{H . In this case, since H is proper, we may pick

two distinct left cosets g1H � g2H , and now since these are disjoint compact

subsets of G there are open neighbourhoods U, V of the identity in G such that

V g1HU X V g2HU � H. Hence the subset

tpgH, g1Hq P pG{Hq2 : gHU X g1HU � Hu
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is manifestly pRφ � Rφq-invariant, is open and contains the diagonal tpgH, gHqu
and so has positive measure for mb2

G{H , but also omits the open set V g1 � V g2 and

so has complement with positive measure. Therefore Rφ is not weakly mixing. ⊳

We will see an example of a weakly mixing transformation once we have a

little more machinery. One important indication of the merit in Definition 14 is

that it has many equivalent formulations.

Proposition 16. The following are equivalent:

1. pX,Σ, µ, T q is weakly mixing;

2. for any other ergodic system S : Γ ñ pY,Φ, νq the product T � S : Γ ñ

pX � Y,Σb Φ, µb νq is ergodic;

3. for any finite collection tA1, A2, . . . , Aku � Σ and ε ¡ 0 there is some

γ P Γ such that |µpAi X T γAjq � µpAiqµpAjq|   ε for all i, j ¤ k;

4. for any finite collection

tf1, f2, . . . , fku � L2
0pµq :�  

f P L2
Cpµq :

³
X
f dµ � 0

(

and ε ¡ 0 there is some γ P Γ such that

|xfi, fj � T γy| �
���
»
X

fi � pfj � T γq dµ
���   ε for all i, j ¤ k;

and, in case Γ � Zd,

5. for any f, g P L2
0pµq there is a subset M � Nd of zero density, meaning that

|M X t1, 2, . . . , Nud|
Nd

ÝÑ 0 as N ÝÑ 8,

such that xf, g�Tniy ÝÑ 0 for any sequence pniqi¥1 tending to8 in NdzM ;

6. for any A,B P Σ there is a subset M � Nd of zero density such that µpAX
TniBq ÝÑ µpAqµpBq for any sequence pniqi¥1 tending to 8 in NdzM .

Proof. (1. ùñ 4.) Suppose that tf1, f2, . . . , fku � L2
0pµq and ε ¡ 0 are such

that for every γ P Γ there are some i, j ¤ k for which
��xfi, fj �T γy| ¥ ε. Consider

the function

F px, yq :�
ķ

i�1

fipxqfipyq P L2pµb2q.
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Since
³
X
fi dµ � 0 for each i, it follows that

»
X2

F dµb2 �
ķ

i�1

� »
X

fi dµ
	� »

X

fi dµ
	
� 0, i.e. F P L2

0pµb2q.

Let

K :� convtF � pT γ � T γq : γ P Γu,
the closure of the set of convex combinations of the shifts F � pT γ � T γq of the

function F . Since L2
0pµb2q � L2pµb2q is pT � T q-invariant, K lies inside this

subspace.

We will next show that

inft}G}L2pµb2q : G P Ku ¥ ε ¡ 0.

Indeed, by continuity it suffices to check this when G � °s
r�1

αrF � pT γr � T γrq
is a finite convex combination, and in this case we can compute as follows:

}G}22 �
ş

r,r1�1

αrαr1
@
F � pT γr � T γrq, F � pT γr1 � T γr1 qD

�
ş

r,r1�1

αrαr1
ķ

i,i1�1

@pfi � T γrq b pfi � T γrq, pfi1 � T γr1 q b pfi1 � T γr1 qD

�
ş

r,r1�1

αrαr1
ķ

i,i1�1

|xfi � T γr , fi1 � T γr1 y|2

�
ş

r,r1�1

αrαr1
ķ

i,i1�1

|xfi, fi1 � T γr1γ
�1
r y|2

¥ ε2
ş

r,r1�1

αrαr1 � ε2
� ş

r�1

αr

	2

� ε2.

The point to this is that it gives us a new way (without averaging, since we do

not have the Norm Ergodic Theorem for an arbitrary group Γ) of producing a non-

trivial pT �T q-invariant function. Indeed, since the Hilbert space norm } � }L2

0
pµb2q

is uniformly convex and has a positive lower bound on the closed convex set K, it

attains a unique minimum on K (even though K is possibly non-compact). Sup-

pose that minimum is attained at G P K. By uniqueness, this G must be pT � T q-
invariant, so

}G}2 ¥ ε,

»
X�X

Gdµb2 � 0 and G � pT γ � T γq � G @γ P Γ.
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Therefore G is a nonconstant invariant function in L2pµb2q, and so T � T is not

ergodic.

(4. ùñ 3.) If tA1, A2, . . . , Aku � Σ and ε ¡ 0, then for each i we consider

the balanced function fi :� 1Ai
� µpAiq P L2

0
pµq, and now by assumption 4.

there is some γ P Γ such that for every i, j ¤ k we have

ε ¡ |xfi, fj � T γy| � |x1Ai
� µpAiq, 1T γ�1 pAjq

� µpAjqy|
� |µpAi X T γ

�1pAjqq � µpAiqµpAjq|.

(3. ùñ 2.) Suppose that property 3. holds, but that a Γ-system pY,Φ, ν, Sq
has been found such that T � S is not ergodic. Let E P Σb Φ be an invariant set

with α :� pµb νqpEq P p0, 1q. We will prove that S cannot be ergodic.

First, using a standard property of the product measure, for any ε ¡ 0 there is a

finite collection of pairwise-disjoint rectangles A1�B1, . . . , Ak�Bk withAi P Σ

and Bi P Φ such that

pµb νq
�
E△

¤
i¤k

pAi �Biq
	
  ε

ùñ pµbνq
�¤
i¤k

pAi�Biq
	
  α�ε and pµbνq

�
EX

¤
i¤k

pAi�Biq
	
¡ α�ε.

Since E and pµ b νq are both pT � Sq-invariant, it follows that for any γ P Γ the

above inqualities hold with each rectangle Ai � Bi moved to T γAi � T γBi, and

so combining these facts gives

pµb νq
� ¤
i¤k

pAi �Biq
	
� pµb νq

� ¤
i¤k

pT γAi � SγBiq
	
  α� ε

and pµb νq
� ¤
i¤k

pAi �Biq X
¤
j¤k

pT γAj � SγBjq
	
¡ α� 2ε

for all γ P Γ.

Since the rectangles are pairwise disjoint, we have

pµbνq
� ¤
i¤k

pAi�BiqX
¤
j¤k

pT γAj�SγBjq
	
�
¸
i,j¤k

pµbνqppAiXT γAjq�pBiXSγBjqq

�
¸
i,j¤k

µpAi X T γAjq � νpBi X SγBjq

13



Now, using property 3, for any ε ¡ 0 we can find γ P Γ such that |µpAiXT γAjq�
µpAiqµpAjq|   ε{k2 for all i, j ¤ k. In this case the last expression above would

lie within ε of

¸
i,j¤k

µpAiqµpAjq � νpBi X SγBjq �
A ķ

i�1

µpAiq1Bi
,

ķ

j�1

µpAjq1Bj
� Sγ�1

E
L2pνq

.

Letting g :� °k
i�1

µpAiq1Bi
, we see that it is measurable, non-negative, and that

gpyq �
ķ

i�1

µpAiq1Bi
pyq � µ

!
x P X : px, yq P

k¤
i�1

pAi �Biq
)
¤ 1,

because the rectanglesAi�Bi are pairwise disjoint. So 0 ¤ g ¤ 1 and, in addition,³
Y
g dν � °k

i�1
µpAiqνpBiq ¤ α� ε.

However, the inequalities proved above give

xg, g � Sγ�1y ¥ α� 3ε ¥
»
Y

g dν � 4ε,

and the Cauchy-Schwartz inequality implies that

|xg, g � Sγ�1y| ¤ }g}2}g � Sγ�1}2 � }g}22 �
»
Y

g2 dν,

so overall we have shown that 0 ¤ g ¤ 1 and

»
g2 ¥

»
g � 4ε ùñ

»
gp1� gq ¤ 4ε.

By Chebychev’s inequality this implies

νty P Y : gpyqp1� gpyqq ¥ 4
?
εu   ?

ε.

Letting C :� ty : gpyq ¥ 1{2u, Fubini’s Theorem now gives

pµb νq
� k¤
i�1

pAi �Biq△pX � Cq
	

�
»
Y zC

µ
!
x : px, yq P

k¤
i�1

pAi �Biq
)
νpdyq

�
»
C

µ
!
x : px, yq R

k¤
i�1

pAi �Biq
)
νpdyq

�
»
Y zC

g �
»
C

p1� gq   10
?
ε.
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Since our union of rectangles was an approximation to E, we obtain that pµb
νqpE△pX � Cqq   ε � 10

?
ε. Since ε was arbitrary, it follows that E may be

approximated arbitrarily well by sets depending only on the second coordinate in

X �Y , and so E must itself be equal to such a set X �D modulo a negligible set.

This in turn requires that D be almost S-invariant of measure α, and hence that�
γPΓ S

γD has full measure in D and is strictly S-invariant, so S is not ergodic.

(2. ùñ 1.) This takes two quick strides: first applying 2. with S the trivial

action on a one-point space shows that T is ergodic, and now applying it again with

pY,Φ, ν, Sq :� pX,Σ, µ, T q proves property 1.

Now suppose that Γ � Zd.

(1. ùñ 5.) This is similar to the implication (1. ùñ 4.) but uses the Norm

Ergodic Theorem. Suppose that T � T is ergodic and that f, g P L2
0
pµq. The point

is that the inner products |xf, g�Tny| are bounded by }f}2}g}2 independently of n,

and therefore the assertion of convergence to zero away from a zero-density subset

of Nd is equivalent to the assertion that

1

Nd

¸
nPrNsd

|xf, g � Tny|2 ÝÑ 0 as N ÝÑ 8.

However, the left-hand expression here is equal to

1

Nd

¸
nPrNsd

@
f bf, pgbgq� pT �T qnD � A

f bf, 1

Nd

¸
nPrNsd

pgbgq� pT �T qn
E
.

Since g P L2
0pµq it follows that

³
X�X g b g dµb2 � 0, and now since T � T is

ergodic the Norm Ergodic Theorem gives that

1

Nd

¸
nPrNsd

pg b gq � pT � T qn ÝÑ 0 in L2pµb2q as N ÝÑ 8,

and hence the above inner products also tend to zero, as required.

(5. ðñ 6.) Once again this follows in one direction by replacing each set A

with its balanced function f :� 1A � µpAq, and in the other by approximating ar-

bitrary functions by finite-valued simple functions and then considering their level

sets individually.

(5. ùñ 4.) If tf1, f2, . . . , fku � L2
0pµq and ε ¡ 0, then, by assumption, for

each i, j there is some Mi,j � Nd having zero density such that |xfi, fj �Tny|   ε

for all n P NdzMi,j . Since a finite union of zero-density sets still has zero density,

we can find a point n P Ndz�i,j¤kMi,j , and this now witnesses the property

4.
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Remark. It is important to be aware that an action of a group Γ can be weakly

mixing even though there is some sequence of group elements γi ÝÑ 8 such

that the images T γiA do not become asymptotically independent, as in condition 3

above. Indeed, if any infinite subgroup Λ ¤ Γ is such that the subaction pT λqλPΛ
is weakly mixing, then the whole action T is weakly mixing, even though some

other subgroup Λ1 ¤ Γ may have subaction which is not even ergodic. ⊳

Now condition 2 above and a simple induction give the following.

Corollary 17. If T : Γ ñ pX,Σ, µq is weakly mixing then all of its Cartesian

powers T�N : Γñ pXN ,ΣbN , µbN q are also weakly mixing.

In the next lecture we will explore a rather deeper necessary and sufficient

condition for weak mixing, but that will have to wait until we have developed more

tools.

The Bernoulli shifts offer examples of systems that are weakly mixing. A hint

of this is offered by our intuitive discussion of the movement of pairs of points.

Suppose that µ � νbΓ is a Bernoulli measure on the product space EΓ and that

x, y P EΓ are chosen separately at random from µ. Then for any other w, z P EΓ

and any finite subset F � Γ, because F is finite we may choose a sequence of

translates Fγ1, Fγ2, . . . that are pairwise disjoint. For each of these translates

there is some positive (although maybe very small) probability that both x|Fγi
is

the γi-translate of z|F and y|Fγi
is the γi-translate ofw|F . Since these events are all

independent when px, yq are drawn independently from µ (because disjoint sets of

coordinates are independent under µ), it follows that they must happen somewhere

with probability 1, and hence that pT γix, T γiyq � pz, wq for some i. So it seems

that almost every pair of points visits the vicinity of any other pair as we apply the

diagonal action T � T . However, to make rigorous contact with Definition 14 we

need a little more care, and in particular we need the following further definition.

Definition 18 (Strong mixing). A p.-p.s. T : Γ ñ pX,Σ, µq is strongly mixing if

for any A,B P Σ we have

µpAX T γBq ÝÑ µpAqµpBq as γ ÝÑ 8 in Γ.

Lemma 19. Strong mixing implies weak mixing.

Proof. This follows from condition 3 of Proposition 16: givenA1, A2, . . . , Ak P Σ

and ε, strong mixing implies that, for each pair i, j ¤ k,

|µpAi X T γAjq � µpAiqµpAjq|   ε

for all γ outside some finite set Fi,j � Γ, so taking γ outside
�
i,j Fi,j witnesses

that condition.
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Example. Let us now prove properly that a Bernoulli Γ-system is strongly mixing

and hence weakly mixing. Recall first that this is the action

T γ : pxλqλPΓ ÞÑ pxλγqλPΓ
defined on a product probability space pEΓ,BpEΓq, νbΓq for some auxiliary prob-

ability space pE, νq. For a finite subset F � Γ, let πF : EΓ ÝÑ EF be the

coordinate projection. If A,B � EΓ are measurable, then for any ε ¡ 0 there

are sets A0, B0 � EΓ which depend on only finitely many coordinates, say with

A0 � π�1

F pA1q and B0 � π�1

H pB1q, and such that µpA△A0q, µpB△B0q   ε{4.

However, provided γ P Γ is outside the finite set F �H�1, it follows that F is

disjoint from Hγ, and hence that A0 and T γ
�1pB0q are strictly independent events

under µ:

µpA0 X T γ
�1pB0qq � µpA0qµpB0q.

Combining this with the approximation of A, B by A0, B0 gives

|µpAX T γ
�1pBqq � µpAqµpBq|   ε,

as required. ⊳

At this point, let us also note the obvious fact that weak and strong mixing are

isomorphism invariants of systems, and so give us a way to distinguish systems up

to isomorphism.

Corollary 20. Compact homogeneous space rotations are never isomorphic to

Bernoulli shifts, unless both are trivial.

We have seen that

Strong mixing ùñ Weak mixing ùñ Ergodicity,

where the second implication is strict (it cannot be reversed) for many groups (at

least, any group that admits a nontrivial homomorphism to a compact group). For

many groups, including every Zd, the first implication here is also strict, but this is

harder to prove. It is not known whether all countably infinite groups have actions

that are weakly mixing but not strongly mixing.

The examples we have seen of systems that are ergodic but not weakly mixing

have been rotations on compact homogeneous spaces. In fact, it turns out that in a

sense these are the only examples: any system which is not weakly mixing has a

nontrivial factor which is isomorphic to one of these compact homogeneous space

rotations. This fact will be the subject of the next lecture.
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Ergodic Theory

Notes 5: More about mixing

1 Isometric actions

Having introduced weak and strong mixing in Notes 4, we continue to investigate

weak mixing by proving a much more sophisticated equivalent characterization.

The first step is a more detailed study of a special class of systems, generalizing

the torus rotations.

Definition 1. A p.-p. Γ-system is isometric if it is of the form ♣X,B♣Xq, µ, T q,
where ♣X, dq is a compact metric space and T γ is an isometry of ♣X, dq for every

γ. Often we denote this situation by ♣X, d,B♣Xq, µ, T q
Slightly more generally, a p.-p. Γ-system is Polish isometric if it is as above,

but where ♣X, dq is Polish but not necessarily compact.

Despite their superficial similarity, actions by isometries form a much more

restricted class than arbitrary topological systems.

Lemma 2. The only weakly mixing isometric system is the trivial system.

Proof. If ♣X, d,B♣Xq, µ, T q is isometric, then the metric d : X✂X ÝÑ r0,✽q is

♣T✂T q-invariant. Therefore, if the system is weakly mixing, dmust be ♣µ❜µq-a.s.

constant.

For any ε → 0, the compact space X may be covered by finitely many balls of

radius ε, it follows that some balls of radius ε have positive measure, implying that

d♣x, yq ↕ 2ε for a positive-measure set of pairs ♣x, yq P X2. Since ε was arbitrary,

this means that d♣x, yq ✏ 0 for ♣µ ❜ µq-a.e. ♣x, yq, and hence µ is equal to the

Dirac mass δx for some (indeed, for µ-a.e.) x.

Lemma 3. If ♣X, dq is a compact metric space, and the isometry group Isom♣X, dq
is given the topology of uniform convergence, then it is a compact metric topologi-

cal group.
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Proof. The topology of uniform convergence on Isom♣X, dq is generated by the

metric

D♣S, T q :✏ sup
xPX

d♣Sx, Txq.

Since both S and T are d-preserving, one always has

D♣S, T q ✏ sup
x
d♣x, S✁1♣Txqq ✏ sup

x
d♣T✁1♣Txq, S✁1♣Txqq

✏ sup
y
d♣T✁1y, S✁1yq ✏ D♣T✁1, S✁1q, (1)

because both x and y :✏ Tz range over the whole of X in these suprema.

It is easily checked that composition and inversion define continuous opera-

tions

Isom♣X, dq ✂ Isom♣X, dq ÝÑ Isom♣X, dq and Isom♣X, dq ÝÑ Isom♣X, dq

for this metric, so it remains to check that it is complete and totally bounded.

Completeness If ♣Snqn is a Cauchy sequence forD, then so is ♣S✁1
n qn, by (1).

Both are uniformly convergent sequences of 1-Lipschitz functions X ÝÑ X , and

so both sequences converge uniformly to some limiting 1-Lipschitz functions. Hav-

ing observed this, the fact that composition is continuous under the metric D im-

plies that those limits functions are also inverse to each other, hence are isometries.

Cauchy subsequences Now let ♣Snqn➙1 be an arbitrary sequence in Isom♣X, dq.
Since ♣X, dq is compact, it is separable, so we may choose a countable dense se-

quence ♣xmqm➙1 in X . Now, for each m, the sequence of images ♣Sn♣xmqqn➙1

lies in the compact space X . Therefore, a diagonal argument gives a subsequence

♣Sni
qi➙1 such that ♣Sni

♣xmqqi➙1 is Cauchy for each m, and also ♣Sni
♣xmqqi➙1 is

Cauchy for each m.

Now, for any ε → 0, we may choose some finitem1 such thatX ✏
➈

m↕m1
Bε♣xmq.

Given this, we may choose some i1 such that

i, j ➙ i1 ùñ max
m↕m1

d♣Sni
♣xmq, Snj

♣xmqq ➔ ε

ùñ sup
xPX

d♣Sni
♣xq, Snj

♣xqq ➔ 3ε.

This proves that ♣Sni
qi➙1 is Cauchy in the uniform topology.

For these systems, we now have the following generalization of the unique

ergodicity of irrational circle rotations.
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Lemma 4. Let ♣X, dq be a compact metric space, let G :✏ Isom♣X, dq, let φ :

Γ ÝÑ Isom♣X, dq be a homomorphism, and let µ be a φ♣Γq-invariant and ergodic

Borel probability measure on X . Let K :✏ φ♣Γq ↕ G. Then µ is supported on a

single Kx for some x P X , and is given by the formula

µ♣Aq ✏ mtk P K : kx P A✉,

where m is the Haar probability measure on K.

Proof. Step 1. By assumption, any element of φ♣Γq ✏ tφ♣γq : γ P Γ✉ ❸
Isom♣X, dq preserves µ. We first show that this fact extends to any element of

K :✏ φ♣Γq. To see this, suppose that f P C♣Xq and φ♣γnq ÝÑ g P K. Then f is

uniformly continuous, and this implies that ⑥f ✆φ♣γnq✁ f ✆ g⑥✽ ÝÑ 0, and hence

➺
f dµ ✏

➺
f d♣φ♣γnq✝µq ✏

➺
f ✆ φ♣γnq dµ ÝÑ

➺
f ✆ g dµ ✏

➺
f d♣g✝µq.

Since f was arbitrary, this implies that µ ✏ g✝µ. Since g was any element of K, it

follows that K preserves µ.

Step 2. Since µ is a Borel probability measure on X , there is some x P X for

which µ♣Bε♣xqq → 0 for all ε → 0 (otherwise, by compactness, we could cover X

by finitely many open balls of measure 0). Also, µ-a.e. x has this property.

Fix such an x, and observe that its orbit Kx is a compact subset of X , because

it is the image of the compact group K under the continuous maps k ÞÑ kx. Now

consider the function

f : Y ÝÑ r0,✽q : y ÞÑ dist♣y,Kxq.

For this function, we have tf ➔ ε✉ ❹ Bε♣xq, and hence

µtf ➔ ε✉ ➙ µ♣Bε♣xqq → 0 ❅ε → 0.

On the other hand, it is continuous, hence measurable, and it is K-invariant by

construction. Therefore, by ergodicity, it is µ-a.s. constant. Combining these facts,

it must equal 0 almost surely, and hence

µtf ✏ 0✉ ✏ µ♣Kxq ✏ 1.

That is, µ is supported on Kx. Since µ-a.e. point had the required property of x, it

also follows that Kx ✏ Ky for µ-a.e. y.
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Step 3. Finally, since µ is K-invariant, for any A P B♣Xq we have µ♣Aq ✏
k✝µ♣Aq for all k. Averaging over k, this becomes

µ♣Aq ✏

➺
K

k✝µ♣Aqm♣dkq ✏

➺
K

➺
Y

1A♣kyqµ♣dyqm♣dkq

✏

➺
X

➺
K

1A♣kyqm♣dkqµ♣dyq ✏

➺
X

mtk : ky P A✉µ♣dyq.

However, if Kx ✏ Ky, then y ✏ k0x for some k0, and now

mtk : ky P A✉ ✏ mtk : kk0x P A✉ ✏ mtk : kx P A✉,

because m is rotation-invariant. Therefore the above integrand is equal to mtk :

kx P A✉ for µ-a.e. y, and so µ is given by the desired formula.

Corollary 5. In the setting above, let T denote the resulting p.-p. Γ-action onKx:

T γy :✏ φ♣γq♣yq. Then there is an isomorphism of topological systems

ψ : ♣K④H,Rφq
✕
ÝÑ ♣Kx, T q,

where

H :✏ StabKx ✏ tk P K : kx ✏ x✉

and Rφ is the compact homogeneous space rotation-action K ñ K④H , and such

that µ ✏ ψ✝mK④H for the Haar probability measure on mK④H .

Proof. Consider the orbit-map ψ : K ÝÑ Kx defined by ψ♣kq ✏ kx. As re-

marked above, this is continuous map from one compact space to another, and it is

surjective, by definition. Also, by a standard manipulation, if h P H :✏ StabKx,

then ψ♣khq ✏ khx ✏ kx ✏ ψ♣kq for all k, so we obtain a well-defined map

ψ : K④H ÝÑ Kx by letting ψ♣kHq :✏ kx. It is easily checked that this is still

continuous, and it is now also injective because

ψ♣kHq ✏ ψ♣k✶Hq ðñ kx ✏ k✶x ðñ ♣k✁1k✶qx ✏ x

ðñ k✁1k✶ P H ðñ kH ✏ k✶H.

Therefore, ψ defines an isomorphism of topological systems

♣K④H,Rφq ÝÑ ♣Kx, T q,

which therefore also respects the Borel σ-algebras. To finish, observe that µ ✏
ψ✝mK④H , by the formula for µ obtained in the lemma.
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This, ergodic isometric systems are simply the same (up to isomorphism) as

the compact homogeneous-space rotations introduced previously.

We next prove that one can identify a canonical maximal isometric factor in an

arbitrary ergodic system.

Lemma 6. Let ♣X,Σ, µ, T q be a system in which Σ is countably-generated up to

µ-negligible sets. Then this system has a unique largest factor (up to negligible

sets) which is generated by a factor map to an isometric action. This is called its

Kronecker factor.

Proof. Let C ❸ Σ be the collection of all sets that are pulled back under some

isometric factor maps. We must show that there is a single isometric factor map

that contains every element of C up to µ-negligible sets.

Since the measure-metric ♣Aµ, dµq is separable, we may choose a sequence

Ai in C such that trAis : i P N✉ is dµ-dense in trCs : C P C✉. It now suf-

fices to find a single isometric factor map that generates every Ai. For each i,

let πi : ♣X,Σ, µ, T q ÝÑ ♣Zi,B♣Ziq, νi, Riq be a sequence of isometric factor

maps on compact metric spaces ♣Zi, diq such that Ai lies in the µ-completion of

π✁1
i ♣B♣Ziqq.

By normalizing, we may assume that diam di ↕ 1 for all i. Now the single

map

π : x ÞÑ ♣π1♣xq, π2♣xq, . . .q P
➵
i➙1

Zi

intertwines T with R :✏ R1 ✂ R2 ✂ ☎ ☎ ☎ , which is still an isometric action for the

metric

d♣♣ziqi, ♣z
✶
iqiq :✏

➳
i➙1

2✁idi♣zi, z
✶
iq,

and π pushes µ to some R-invariant measure on Z. Since Ai P π
✁1♣B♣Zqq for

every i, this completes the proof.

We will also need to know that under an ergodicity assumption, isometric and

Polish isometric actions are essentially the same.

Lemma 7. Suppose that ♣X, dq is a Polish metric space, µ is a Borel probability

measure on X, and T : Γñ X is an µ-preserving action by isometries for which µ

is ergodic. Then sptµ is compact.

Proof. Recall that x P X lies in sptµ if and only if µ♣Br♣xqq → 0 for all r → 0.

Since µ♣sptµq ✏ 1, this implies that for every n ➙ 1 there is some rn → 0 such

that

µtx : µ♣B1④n♣xqq → rn✉ → 1✁ 2✁n✁1,
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and hence, by the Borel-Cantelli Lemma, µ♣Zq → 1④2, where

Z :✏
↔
n➙1

tx : µ♣B1④n♣xqq → rn✉.

On the other hand, since T preserves both d and µ, one has

µ♣B1④n♣xqq ✏ µ♣T γB1④n♣xqq ✏ µ♣B1④n♣T
γxqq ❅x P X, γ P Γ,

and so Z is T -invariant. Therefore µ♣Zq ✏ 1, by ergodicity.

Finally, suppose that n ➙ 1, and let S ❸ Z be a maximal set of points that are

pairwise separated by distance at least 1④n. Then, on the one hand, all the balls

B1④2n♣xq for x P S are disjoint and have measure at least ε2n, so S must be finite.

On the other hand, the family of balls ♣B1④n♣xqqxPS must cover the whole of Z, by

the maximality of Z. Since n was arbitrarily large, this has shown that Z is totally

bounded, and so sptµ ❸ Z must be compact.

2 Isometric actions are the obstructions to weak mixing

We can now state and prove a precise characterization of the failure of weak mix-

ing.

Theorem 8. If ♣X,Σ, µ, T q and ♣Y,Φ, ν, Sq are ergodic p.-p. Γ-systems and U P
Σ ❜ Φ is ♣T ✂ Sq-invariant, then U is measurable with respect to Ξ ❜ Λ, where

Ξ and Λ are Kronecker factors of T and S, respectively. In particular, T is weakly

mixing if and only its Kronecker factor is trivial.

The proof of Theorem 8 can be presented in more than way. Our presentation

will make use of the measure-metric spaces ♣Aµ, dµq and ♣Aν , dνq associated to

these p.-p.-systems: recall Lecture 1. As previously, we may assume that Σ and Φ

are countably-generated up to negligible sets, so these measure-metric spaces are

Polish.

Lemma 9. Suppose that ♣X,Σ, µq and ♣Y,Φ, νq are complete probability spaces,

that Λ ↕ Φ is a ν-complete σ-subalgebra, and that U is in the ♣µ❜ νq-completion

of Σ❜ Φ. For each y P Y let Uy :✏ tx : ♣x, yq P U✉. Given the measurability of

U , Fubini’s Theorem implies that Uy P Σ for ν-almost every y.

Assume further that the function

Y ÝÑ Aµ : y ÞÑ rUys

is measurable with respect to Λ. Then U lies in the ♣µ❜ νq-completion of Σ❜ Λ.
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Proof. This proof has a very similar flavour to the implication (3. ùñ 2.) in

Proposition 16 of Notes 4.

First observe that for any f P L1♣µq and g P L1♣νq, our assumption on U and

Fubini’s Theorem give that➺
1U ☎ ♣f ❜ gq d♣µ❜ νq ✏

➺
Y

g♣yq
✁ ➺

Uy

f♣xqµ♣dxq
✠
ν♣dyq.

Since the expression
➩
Uy
f♣xqµ♣dxq depends only on rUys, it is Λ-measurable as a

function of y, and so the above is equal to➺
Y

E♣g ⑤Λq♣yq
✁ ➺

Uy

f♣xqµ♣dxq
✠
ν♣dyq ✏

➺
1U ☎ ♣f ❜ E♣g ⑤Λqq d♣µ❜ νq.

To use this fact, recall that, by the definition of Σ❜Φ, for every ε → 0 there is

a finite family of disjoint measurable rectangles Ai ✂Bi P Σ❜ Φ, i ✏ 1, 2, . . . , ℓ,

such that ✎✎✎1U ✁
➳
i

1Ai
❜ 1Bi

✎✎✎
1
➔ ε.

The trick is to use this rectangle approximation to compare 1U with itself:

♣µ❜ νq♣Uq ✏

➺
1U ☎ 1U d♣µ❜ νq

ε
✓

➺
1U ☎

✁➳
i

1Ai
❜ 1Bi

✠
d♣µ❜ νq

✏

➺
1U ☎

✁➳
i

1Ai
❜ E♣1Bi

⑤Λq
✠

d♣µ❜ νq

✏

➺
E♣1U ⑤Σ❜ Λq ☎

✁➳
i

1Ai
❜ E♣1Bi

⑤Λq
✠

d♣µ❜ νq

✏

➺
E♣1U ⑤Σ❜ Λq ☎

✁➳
i

1Ai
❜ 1Bi

✠
d♣µ❜ νq

ε
✓

➺
E♣1U ⑤Σ❜ Λq ☎ 1U d♣µ❜ νq.

Since ε was arbitrary, this implies that f :✏ E♣1U ⑤Σ❜Λq is a function taking

values in r0, 1s, and is such that➺
X

f d♣µ❜ νq ✏

➺
U

f d♣µ❜ νq ✏ ♣µ❜ νq♣Uq.

Therefore f must equal 1 on almost all of U and 0 on almost all of ♣X ✂ Y q③U .

Therefore U agrees up to a negligible set with tf ✏ 1✉, which lies in Σ❜ Λ.
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Proof of Theorem 8. Suppose that U ❸ X ✂X is ♣T ✂ Sq-invariant, and consider

the function

φ : Y ÝÑ Aµ : y ÞÑ rUys

which is well-defined µ-a.e. Another easy exercise using the measurability of U

shows that this function is also measurable.

On the Polish space ♣Aµ, dµq, define the Γ-action T̃ by T̃ γrAs :✏ rT γAs. This

is a well-defined isometric action because T is µ-preserving.

Now, the ♣T ✂ Sq-invariance of U implies that

USγy ✏ T γUy ❅y P X, γ P Γ,

and so φ : ♣Y, Sq ÝÑ ♣Aµ, T̃ q is equivariant. Let µ̃ :✏ φ✝ν, a Borel probability

measure on Aµ. Then this gives that φ is a factor map from ♣Y,Φ, ν, Sq to the

Polish isometric system ♣Aµ, dµ,B♣Aµq, µ̃, T̃ q. Since ♣Y,Φ, ν, Sq is ergodic, so

is the target system, and therefore Lemma 7 implies that Z :✏ spt µ̃ is compact.

Since φ a.s. takes values in Z, it still defines a factor map Y ÝÑ Z, as required.

By construction, y ÞÑ rUys is measurable with respect to this factor, and there-

fore U is ♣Σ❜Λq-measurable by Lemma 9. Applying the same reasoning with the

rôles of X and Y reversed completes the proof.

3 Representation-theoretic interpretation

This section will give another characterization of the failure of weak mixing, this

time in terms of the unitary representation UT : Γ ñ L2♣µq associated to a p.-p.

Γ-system ♣X,Σ, µ, T q by U
γ
T f :✏ f ✆ T γ✁1

. This is referred to as the Koopman

representation associated to the action T .

The following is a counterpart to Theorem 8 which describes the failure of

weak mixing in terms of this representation.

Theorem 10. If ♣X,Σ, µ, T q is ergodic and H P L2♣µ❜2q is ♣T ✂ T q-invariant,

then H is contained in the closed linear span of

tφ❜ ψ : φ, ψ lie in finite-dimensional UT -invariant subspaces✉.

In case Γ ✏ Z
d, it is relatively easy to deduce this result from the description

of the commuting family of unitary operators Un

T f :✏ f ✆ T✁n on L2♣µq given by

the spectral theorem. For a general group Γ, whose unitary representation theory

may be very messy and complicated, this approach is unavailable, and even for Z
d

it is instructive to take a more elementary approach. One tool that we will need

is the spectral theorem for compact self-adjoint operators, recalled with the other

preliminaries in Notes 1:
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Theorem 11 (Spectral Theorem for compact self-adjoint operators). If M is a

compact self-adjoint operator on L2♣µq then there are an orthonormal sequence

ξ1, ξ2, . . .P L2♣µq and real numbers λ1, λ2, . . . such that ⑤λ1⑤ ➙ ⑤λ2⑤ ➙ . . .,

⑤λi⑤ ÝÑ 0 and

M ✏
➳
i➙1

λiPξi
,

where Pξi
is the one-dimensional orthogonal projection onto C ☎ ξi.

Our application of this result rests on the following important identification.

Lemma 12. If ♣X,Σ, µq is a probability space andK P L2♣µ❜2q then the operator

K✍ : L2♣µq ÝÑ L2♣µq defined by

K ✍ f♣xq :✏

➺
X

K♣x, yqf♣yqµ♣dyq

is (bounded and) compact.

Proof. Let us first prove that K✍ is bounded, and more concretely that

⑥K ✍ ⑥op ↕ ⑥K⑥L2♣µ❜2q.

This follows from a simple appeal to the Cauchy-Schwartz inequality:

⑥K ✍ f⑥22 ✏

➺
X

✞✞✞
➺

X

K♣x, yqf♣yqµ♣dyq
✞✞✞2 µ♣dxq

↕

➺
X

✁ ➺
X

⑤K♣x, yq⑤2 µ♣dyq
✠
⑥f⑥22 µ♣dxq

✏ ⑥K⑥2L2♣µ❜2q⑥f⑥
2
2.

Having proved this, we now recall that as a square integrable function on X ✂
X , K may be approximated in L2♣µ❜2q by finite sums of tensor product functions:

that is, functions of the form

L♣x, yq :✏
k➳

i✏1

φi♣xqψi♣yq with φi, ψi P L
2♣µq for i ↕ k.

Let B denote the unit ball in L2♣µq. For any such L the associated operator L✍
has image contained in spantφ1, . . . , φk✉, so gives L ✍ ♣Bq contained in a finite-

dimensional subspace and is therefore certainly compact. Since for any ε → 0 we

may find such an L such that ⑥K ✍ ✁L ✍ ⑥op ↕ ⑥K ✁L⑥2 ➔ ε④2, and now the unit

ball image L ✍ ♣Bq admits a finite covering by ♣ε④2q-balls, enlarging each of these

to an ε-ball gives a finite covering of K ✍ ♣Bq, so since ε was arbitrary this latter

set is precompact.
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Proof of Theorem 10. First, let us write

H♣x, yq :✏ K♣x, yq � iL♣x, yq

with K♣x, yq :✏ 1
2
♣H♣x, yq �H♣x, yqq and L♣x, yq :✏ i

2
♣H♣x, yq ✁H♣x, yqq, so

that K enjoys the skew-symmetry K♣y, xq ✏ K♣x, yq and similarly for L. Clearly

it suffices to prove the result for each of K and L separately. We give the proof for

K, the case of L being identical.

By Lemma 12 the associated operator K✍ is compact, and in addition, the

skew-symmetry of K amounts to the self-adjointness of the operator:

①g,K ✍ f② ✏

➺
X

g♣xq

➺
X

K♣x, yqf♣yqµ♣dyqµ♣dxq

✏

➺
X

➺
X

g♣xqK♣x, yqf♣yqµ♣dyqµ♣dxq

✏

➺
X

➺
X

g♣xqK♣y, xqf♣yqµ♣dxqµ♣dyq

✏ ①K ✍ g, f②.

Therefore Theorem 11 gives a decomposition

K✍ ✏
➳
i➙1

λiPφi

for some orthonormal sequence of eigenvectors φi with real eigenvalues λi ÝÑ 0.

Writing this out in terms of functions on X ✂X , we have Pφi
✏ ♣φi ❜ φiq✍, and

hence

K♣x, yq ✏
➳
i➙1

λiφi♣xqφi♣yq

as a convergent series in ⑥ ☎ ⑥op. To be careful, we should note at this point that

because the φi are orthonormal, this convergence in operator norm implies

➺
X✂X

K♣φj❜φjq dµ
❜2 ✏ ①φj ,K✍φj② ✏ lim

mÝÑ✽

m➳
i✏1

λi⑤①φj , φi②⑤
2 ✏ λj⑥φj⑥

2
2 ✏ λj ,

and so since the functions φj❜φj are also orthonormal we must have
➦

j ⑤λj ⑤
2 ➔ ✽

and therefore the above series also converges in L2♣µ❜2q.
Finally, the ♣T ✂ T q-invariance of K implies that ♣K✍q ✆Uγ

T ✏ U
γ
T ✆ ♣K✍q for

all γ P Γ, and hence that all of the non-trivial eigenspaces of K✍ are UT -invariant.

Since these are finite-dimensional subspaces of L2♣µq and each φi is contained in

one of them, this fact and the above series expansion of K complete the proof.
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4 The existence of weak mixing without strong mixing

To round out our discussion of weak and strong mixing, it seems worth proving

that for Γ ✏ Z they are not the same.

It is possible to describe concrete examples of p.-p.t.s that are weakly but not

strongly mixing, but surprisingly tricky (two such are given in Section 4.5 of Pe-

tersen [Pet83]). However, even more surprisingly, it turns out that ‘almost all’

systems are examples (in the sense of Baire category), notwithstanding the diffi-

culty of isolating any given one of them. This means that it is possible to prove

their existence without describing one in detail (although, of course, some kind

of description can always be recovered by unpicking the Baire category proof to

produce a sequence that converges to an example).

Here we will take a slightly unusual approach to this Baire category argument

because it is quicker, by working in a space of measures rather than of transforma-

tions.

Theorem 13. Let S be the right-shift transformation on the Hilbert cube X :✏
r0, 1sZ, and let the convex set of invariant measures PrS♣Xq be given its vague

topology, in which it is compact and metrizable. Then the subsets

P :✏ tµ P PrS♣Xq : ♣X,B♣Xq, µ, Sq is strongly mixing✉

and

Q :✏ tµ P PrS♣Xq : ♣X,B♣Xq, µ, Sq is weakly mixing✉

are respectively meagre (that is, first category) and co-meagre (second category)

in this topology. Consequently Q③P is nonempty.

Proof. Clearly there are two parts to this.

(1) In fact it suffices to treat the mixing properties of just one subset of X .

Let A :✏ t♣xiqi P X : x0 ➙ 1④2✉. Clearly

P ❸ tµ P PrS♣Xq : µ♣A❳ SnAq ÝÑ µ♣Aq2 as ⑤n⑤ ÝÑ ✽✉

❸
✦
µ P PrS♣Xq : ⑤µ♣A❳ SnAq ✁ µ♣Aq2⑤ ↕

1

10
♣µ♣Aq ✁ µ♣Aq2q

for ⑤n⑤ sufficiently large
✮
,

so it suffices to prove that this last set is meagre (so we can really prove our result

with considerable room to spare). This, in turn, is contained in

↕
m➙1

↔
n➙m

✦
µ P PrS♣Xq : ⑤µ♣A❳ SnAq ✁ µ♣Aq2⑤ ↕

1

8
♣µ♣Aq ✁ µ♣Aq2q

✮
,
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which is a countable union of closed sets, so it remains to prove that each of these is

nowhere-dense. Thus, given m ➙ 1, µ P PrS♣Xq and some vague neighbourhood

U ◗ µ, we must find µ✶ P U such that

⑤µ✶♣A❳ SnAq ✁ µ✶♣Aq2⑤ →
1

10
♣µ✶♣Aq ✁ µ✶♣Aq2q

for some n ➙ m.

To do this, first perturb µ very slightly (well within U ) to assume that 0 ➔
µ♣Aq ➔ 1 (although it may be very close to 0 or 1). Now by shrinking the neigh-

bourhood U if necessary, we may assume it is of the form

✦
ν P PrS♣Xq :

✞✞✞
➺

X

fi dν ✁

➺
X

fi dµ
✞✞✞ ➔ ε ❅i ↕ k

✮

for some continuous functions f1, f2, . . . , fk P C♣Xq and ε → 0. Morever,

since continuous functions that depend on only finitely many coordinates in X are

uniformly dense in C♣Xq, by shrinking ε a little further we may replace each fi

with fi ✆ π for the coordinate projection π : X ÝÑ r0, 1sF for some fixed finite

F ⑨ Z and fi P C♣r0, 1s
F q.

However, if we now let M be some integer that is much larger than both

maxt⑤n⑤ : n P F ✉ and m, we may define a new probability measure to be the

law of the random r0, 1s-sequence produced as follows: draw ♣xiqi from the mea-

sure µ, consider its t✁M,✁M � 1, . . . ,M✉-indexed block

x✁M , x✁M�1, . . . , xM ,

and repeat this periodically. This defines a new (possibly non-invariant) measure

θ P Pr♣r0, 1sZq concentrated on strings which are periodic with period 2M � 1,

and which clearly still satisfies θ♣SnAq ✏ µ♣Aq for all n. Now define µ✶ by re-

randomizing over the 2M � 1 distinct translates of these strings:

µ✶ :✏
1

2M � 1

M➳
n✏✁M

Sn
✝θ.

This recovers for us a shift-invariant measure, since the shifts of θ are ♣2M � 1q-
periodic. Among these shifts Sn

✝θ for ✁M ↕ n ↕ M , at least 2M ✁ 2maxt⑤n⑤ :

n P F ✉ ✁ 2 of them have the same marginal on r0, 1sF as µ itself, so provided M

is sufficiently large it follows that most of these translates are very close to µ and

hence also that µ✶ P U . Morever we still have µ✶♣Aq ✏ µ♣Aq.
On the other hand, µ✶ is concentrated on strings that are ♣2M � 1q-periodic, so

if n is any non-zero multiple of 2M � 1 then µ✶♣A△SnAq ✏ 0 and therefore

µ✶♣A❳ SnAq ✏ µ✶♣Aq → µ✶♣Aq2 �
1

10
♣µ✶♣Aq ✁ µ✶♣Aq2q,
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as required.

(2) This time we first recall the following equivalent characterization of the

weak mixing of ♣X,B♣Xq, µ, T q proved in Notes 4: for all A1, A2, . . . , Ak P
B♣Xq and ε → 0 there is some n such that ⑤µ♣Ai ❳ SnAjq ✁ µ♣Aiqµ♣Ajq⑤ ➔ ε

for all i, j ↕ k. Moreover, it is clearly equivalent to test this condition on some

countable µ-dense subfamily of B♣Xq, and in the case of a probability measure on

r0, 1sZ such a countable family is always offered by the collection of finite unions

of products of rational intervals that depend on only finitely many coordinates.

This is important, because it means we can choose a single sequence A1, A2, . . . of

Borel subsets of X , each depending on only finitely many coordinates, which is

µ-dense in B♣Xq for every µ P PrS♣Xq, and so we have

Q ✏
↔
k➙1

↔
n➙1

↕
mPZ

✥
µ P PrS♣Xq : ⑤µ♣Ai❳S

mAjq✁µ♣Aiqµ♣Ajq⑤ ➔ 1④n ❅i, j ↕ k
✭
.

Since this is a countable intersection, to prove it is co-meagre we must prove

that each of the open sets↕
mPZ

✥
µ P PrS♣Xq : ⑤µ♣Ai ❳ SmAjq ✁ µ♣Aiqµ♣Ajq⑤ ➔ 1④n ❅i, j ↕ k

✭

is dense in PrS♣Xq. Suppose that each Ai for i ↕ k depends only on coordinates

in some finite set E ⑨ Z, once again let U be an open subset of PrS♣Xq, and

arguing as before assume it is of the form

✦
ν P PrS♣Xq :

✞✞✞
➺

X

fi ✆ π dν ✁

➺
X

fi ✆ π dµ
✞✞✞ ➔ ε ❅i ↕ k

✮

for some finite-dimensional projection π : X ÝÑ r0, 1sF , continuous functions f1,

f2, . . . , fk P C♣r0, 1s
F q and ε → 0. We will show that U must contain a measure

µ✶ such that ⑤µ✶♣Ai ❳ SmAjq ✁ µ✶♣Aiqµ
✶♣Ajq⑤ ➔ 1④n for all i, j ↕ k for some

m P Z.

To do this, again let M be an integer much larger than maxt⑤n⑤ : n P F ✉, and

construct the law θ P Pr♣Xq of a new random string ♣xiqi by now drawing each of

the finite blocks

xkM , xkM�1, . . . , x♣k�1qM✁1

independently from the corresponding finite-dimensional marginal of µ (of course,

if we draw just one infinite string from µ, then these finite blocks of it will generally

not be independent, so θ is usually ‘more random’ than µ). Once again, θ may not

be S-invariant, but it is SM -invariant and so the average

µ✶ :✏
1

M

M➳
i✏1

Si
✝θ
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is S-invariant. If M is sufficiently large then this µ✶ lies in U , again because for

most n P t1, 2, . . . ,M✉ the marginal of Sn
✝θ onto r0, 1sF agrees with that of µ.

On the other hand, for any m ➙M � diam♣Eq the coordinate projections πE and

πE�m are independent under µ✶, and hence

µ✶♣Ai ❳ SmAjq ✏ µ✶♣Aiqµ
✶♣Ajq ❅i, j ↕ k,

as required.

Remark. The classical Baire category proof of the above result (parts (1) and

(2) being due to Rokhlin and Halmos respectively, both in the 1940s) begins by

fixing a compact metric space with a probability measure, such as r0, 1s with

Lebesgue measure µ. One then defines the coarse (or weak) topology on the group

Aut♣r0, 1s, µq of invertible Borel µ-preserving transformations of r0, 1s so that

S, T P Aut♣r0, 1s, µq are ‘close’ if for some finite list A1, A2, . . . , Ak P B♣r0, 1sq
and some ε → 0 we have µ♣TAi△SAiq ➔ ε for all i ↕ k (equivalently, if US

and UT are close in the strong operator topology of B♣L2♣µqq). It is routine to

check that this defines a completely metrizable group topology on Aut♣r0, 1s, µq,
and now corresponding to our two steps above one can prove that the subsets of

strongly and weakly mixing members of Aut♣r0, 1s, µq are meagre and co-meagre,

respectively, so once again their difference (consisting of weakly-but-not-strongly

mixing transformations) makes up most of the group.

This approach is a little more complicated than ours, because it is slightly more

delicate to modify one transformation into another close to it that has some desired

mixing property than it is to do so with measures in Prshift♣r0, 1sNq. However,

working inside the group of transformations is in some sense more natural, since

the arguments essentially don’t depend on the choice of the underlying probability

space, and also because they can be adapted to prove many other properties of

‘generic’ transformations which are not so easily accessed by looking at the space

of shift-invariant measures. The approach via the space of transformations is nicely

treated in Halmos’ classic text [Hal60]. ⊳
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Ergodic Theory:

Notes 6: Introduction to Szemerédi’s Theorem and

Multiple Recurrence

The next few sets of notes will be concerned with ‘multiple recurrence’. This

ergodic-theoretic phenomenon corresponds to a famous result of arithmetic com-

binatorics, Szemerédi’s Theorem, and some of its generalizations.

The classic introduction to this relation between combinatorics and ergodic

theory is Furstenberg’s book [Fur81]. Some of the treatment here will be closer to

the survey [Aus10b].

1 Van der Waerden’s Theorem, Szemerédi’s Theorem and further

generalizations

In 1927 van der Waerden gave a short, clever combinatorial proof of the following

surprising fact:

Theorem 1 (Van der Waerden’s Theorem [vdW27]). For any fixed integers c, k ➙
1, if the elements of Z are coloured using c colours, then there is a nontrivial k-

term arithmetic progression which is monochromatic: that is, there are some a P Z

and n ➙ 1 such that

a, a� n, . . . , a� ♣k ✁ 1qn.

all have the same colour.

This is now one of the central results in the area of combinatorics called Ram-

sey Theory. The classic overview of this theory is the book [GRS90] of Graham,

Rothschild and Spencer.

Note that it is crucial to allow both the start point a and the common difference

n ➙ 1 to be chosen freely. In some more difficult versions of this theorem it is

possible, for example, to place certain restrictions on what choices we allow for n;

but if we try to restrict ourselves a priori to any one value of n then the result is

certainly false.
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Prompted by van der Waerden’s Theorem, in 1936 Erdős and Turán asked

whether a deeper phenomenon might lie beneath it. Observe that for any c-colouring

of Z and for any long interval in Z, at least one of the colour-classes must occupy

at least a fraction 1④c of the points in that interval. In [ET36] they asked whether

this feature of a subset of Z already implies the presence of arithmetic progressions

of any finite length k in that subset. It turns out that this is true, but its proof had to

wait until Roth treated the case k ✏ 3 in [Rot53], and then Szemerédi handled the

general case in [Sze75], giving rise to what is now called Szemerédi’s Theorem.

The formal statement requires the following definition.

Definition 2 (Upper Banach density). For E ❸ Z
d, its upper Banach density is

the quantity

d̄♣Eq :✏ lim sup
mini↕d ⑤Ni✁Mi⑤ÝÑ✽

✞✞E ❳
➧

i↕drMi, Nis
✞✞➧

i↕d♣Ni ✁Miq
.

That is, d̄♣Eq is the supremum of those δ → 0 such that one can find boxes in

Z
d of arbitrary long side-lengths such that E contains at least a proportion δ of the

lattice points in those box.

Theorem 3 (Szemerédi’s Theorem). If E ❸ Z has d̄♣Eq → 0, then for any k ➙ 1

there are a P Z and n ➙ 1 such that

ta, a� n, . . . , a� ♣k ✁ 1qn✉ ❸ E.

As already remarked, this directly implies van der Waerden’s Theorem, be-

cause in any finite colouring of Z at least one of the colour-classes must have

positive upper Banach density.

Szemerédi’s proof of Theorem 3 is one of the virtuoso feats of modern com-

binatorics. It was also the first serious outing for several tools that have since

become workhorses of that area of mathematics, particularly the Szemerédi Reg-

ularity Lemma in graph theory. However, shortly afterwards Furstenberg gave a

new proof using ergodic theory. In [Fur77], he first showed the equivalence of

Szemerédi’s Theorem to an ergodic-theoretic phenomenon called ‘multiple recur-

rence’, and then proved that using newly-developed structural results in ergodic

theory.

We will introduce multiple recurrence in the next subsection, but let us first

bring the combinatorial side of the story closer to the present. Furstenberg and

Katznelson quickly realized that Furstenberg’s ergodic-theoretic proof could be

considerably generalized, and in [FK78] they obtained a multidimensional version

of Szemerédi’s Theorem as a consequence:

2



Theorem 4 (Multidimensional Szemerédi Theorem). If E ❸ Z
d has d̄♣Eq → 0,

and e1, . . . , ed, is the standard basis in Z
d, then there are some a P Z

d and n ➙ 1

such that

ta� ne1, . . . ,a� ned✉ ❸ E

(so ‘dense subsets contain the set of outer vertices of an upright right-angled sim-

plex’).

This easily implies Szemerédi’s Theorem, because if k ➙ 1, E ❸ Z has

d̄♣Eq → 0, and we define

Π : Z
k✁1 ÝÑ Z : ♣a1, a2, . . . , ak✁1q ÞÑ a1 � 2a2 � ☎ ☎ ☎ � ♣k ✁ 1qak✁1,

then the pre-image Π✁1♣Eq has d̄♣Π✁1♣Eqq → 0, and an upright simplex found in

Π✁1♣Eq projects under Π to a nontrivial k-term progression in E. Similarly, by

projecting from higher-dimensions to lower one can prove that Theorem 4 actually

implies the following:

Corollary 5. If F ⑨ Z
d is finite and E ❸ Z

d has d̄♣Eq → 0, then there are some

a P Z
d and n ➙ 1 such that ta� nb : b P F ✉ ❸ E.

Furstenberg and Katznelson’s proof of Theorem 4 rested on a formulation of

multiple recurrence for actions of Z
d rather than Z. Very surprisingly, Theorem 4

then went without a purely combinatorial proof for another twenty years, until a

new approach using hypergraph theory was developed roughly in parallel by Gow-

ers [Gow06] and Nagle, Rödl and Schacht [NRS06]. That hypergraph approach

gave the first effective, finitary proof of this theorem: unlike the ergodic-theoretic

approach, it also gives some bound in terms of d̄♣Eq on how large a box in Z
d one

must look in before being sure of finding a simplex contained in E. (In principle,

one can extract such a bound from the Furstenberg-Katznelson proof, but it would

be unimaginably poor.)

The success of Furstenberg and Katznelson’s approach gave rise to a new sub-

field of ergodic theory often called Ergodic Ramsey Theory. It now contains several

other results asserting that positive-density subsets of some kind of combinatorial

structure must contain some further pattern of a special kind. Many of these have

only be re-proven by purely combinatorial means (and with effective bounds) very

recently. We will not state these in detail here, but only mention by name the

IP Szemerédi Theorem of [FK85], the Density Hales-Jewett Theorem of [FK91]

(finally given a purely combinatorial proof by the members of Gowers’ ‘Polymath

1’ project in early 2009 [Pol09]), the Polynomial Szemerédi Theorem of Bergelson

and Leibman [BL96] and the Nilpotent Szemerédi Theorem of Leibman [Lei98].
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2 The phenomenon of multiple recurrence

In order to introduce Multiple Recurrence, it is helpful first to recall the probability-

preserving version of Poincaré’s classical Recurrence Theorem.

Theorem 6 (Poincaré Recurrence). If ♣X, Σ, µ, T q is a p.-p.t. and A P Σ has

µ♣Aq → 0, then there is some n ➙ 1 such that µ♣A❳ T✁nAq → 0.

Proof. The images T✁nA are all subsets of the probability space X of equal pos-

itive measure, so some two of them must overlap. Once we have µ♣T✁nA ❳
T✁mAq → 0 for n ✘ m, the invariance of µ under Tn implies that also µ♣A ❳
Tn✁mAq → 0.

Furstenberg’s main result from [Fur77] strengthens this conclusion, by showing

that in fact one may find several of the sets T✁nA, n P Z, that simultaneously

overlap in a positive-measure set, where the relevant times n form an arithmetic

progression.

Theorem 7 (Multiple Recurrence Theorem). If ♣X, Σ, µ, T q is a p.-p.t. and A P Σ

has µ♣Aq → 0, then for any k ➙ 1 there is some n ➙ 1 such that

µ♣T✁nA❳ ☎ ☎ ☎ ❳ T✁knAq → 0.

The Multidimensional Multiple Recurrence Theorem from [FK78] provides an

analog of this for several commuting transformations.

Theorem 8 (Multidimensional Multiple Recurrence Theorem). If T : Z
d
ñ ♣X, Σ, µq

is a p.-p.s. and A P Σ has µ♣Aq → 0 then there is some n ➙ 1 such that

µ♣T✁ne1A❳ ☎ ☎ ☎ ❳ T✁nedAq → 0.

Note that for d ✏ 2, simply applying the Poincaré Recurrence Theorem for the

transformation T e1✁e2 gives the desired conclusion.

Our goals in this course will be to prove Theorem 7 in the first case beyond

Poincaré Recurrence, when d ✏ 3. Two different ergodic-theoretic proofs of The-

orem 8 can be found in [Fur81] and [Aus10b]. These are too long to be included

in this course, but we will formulate and prove a related convergence result for

some ‘nonconventional’ ergodic averages, which gives an introduction to some of

the ideas.

First, let us prove the equivalence of Theorem 8 and Theorem 4. This equiva-

lence (generalizing the case of subsets of Z and single transformations originally

treated in [Fur77]) is often called the ‘Furstenberg correspondence principle’. Al-

though easy to prove, it has turned out to be a hugely fruitful insight into the

relation between two different parts of mathematics. The version we give here

essentially follows [Ber87].

4



Proposition 9 (Furstenberg correspondence principle). If E ❸ Z
d, then there are

a p.-p.s. T : Z
d
ñ ♣X, Σ, µq and a set A P Σ such that µ♣Aq ✏ d̄♣Eq, and for any

v1, v2, . . . , vk P Z
d one has

d̄♣♣E ✁ v1q ❳ ♣E ✁ v2q ❳ ☎ ☎ ☎ ❳ ♣E ✁ vkqq ➙ µ♣T✁v1A❳ ☎ ☎ ☎ ❳ T✁vkAq.

In order to visualize this, observe that

♣E ✁ v1q ❳ ♣E ✁ v2q ❳ ☎ ☎ ☎ ❳ ♣E ✁ vkq

is the set of those n P Z
d such that n � vi P E for each i ↕ k. Its density may

be seen as the ‘density of the set of translates of the pattern tv1,v2, . . . ,vk✉ that

lie entirely inside E’. In these terms the above propositions shows that one can

synthesize a p.-p.s. which provides a lower bound on this density for any given

pattern in terms of the intersection of the corresponding shifts of the subset A.

Proof. First fix a sequence of boxes Rj :✏
➧

i↕drMj,i, Nj,is such that mini↕d♣Nj,i✁
Mj,iq ÝÑ ✽ and

⑤E ❳Rj ⑤

⑤Rj ⑤
ÝÑ d̄♣Eq as j ÝÑ ✽.

We can regard the set E as a point in the space X :✏ P♣Zdq of subsets of Z
d,

on which Z
d naturally acts by translation: T✁nB :✏ B ✁ n. This X can also be

identified with the Cartesian product t0, 1✉Z
d

(by simply associating to each subset

its indicator function), and this carries a compact metric product topology which

makes ♣X, T q a topological system.

Now let

νj :✏
1

⑤Rj ⑤

➳
nPRj

δTn♣Eq for each j,

the uniform measure on the patch of the T -orbit of E indexed by the large rectangle

Rj . Because the side-lengths of the rectangles all tend to ✽, these measures are

approximately invariant: that is, ⑥T✁n

# νj ✁ νj⑥TV ÝÑ 0 as j ÝÑ ✽ for any fixed

n P Z
d. Therefore, if we let µ P Pr♣Xq be any vague limit of them, then µ is

strictly T -invariant. Suppose now that we have passed to a subsequence and may

therefore write νj ÝÑ µ vaguely.

Finally, letting A :✏ tH P X : H ◗ 0✉ (this corresponds to the cylinder set

t♣ωnqn : ω0 ✏ 1✉ in t0, 1✉Z
d

), we will show that this has the desired properties.

By our initial choice of rectangles, we have

µ♣Aq ✏ lim
jÝÑ✽

1

⑤Rj ⑤

➳
nPRj

1Tn♣Eq♣0q ✏ lim
jÝÑ✽

⑤E ❳Rj ⑤

⑤Rj ⑤
✏ d̄♣Aq,

5



where the first convergence holds because 1A is a continuous function for the Carte-

sian product topology on X , and so vague convergence applies to it.

On the other hand, for any v1, v2, . . . , vk P Z
d, the indicator function 1T✁v1A❳☎☎☎❳T✁vkA

is also continuous on X , and so

µ♣T✁v1A❳ ☎ ☎ ☎ ❳ T✁vkAq ✏ lim
jÝÑ✽

1

⑤Rj ⑤

➳
nPRj

1Tn�v1E❳☎☎☎❳Tn�vkE♣0q

✏ lim
jÝÑ✽

1

⑤Rj ⑤

➳
nPRj

1Tv1E❳☎☎☎❳TvkE♣nq

↕ d̄♣Tv1E ❳ ☎ ☎ ☎ ❳ TvkEq,

since the upper Banach density is defined by a limsup over all rectangles of in-

creasing side-lengths.

Corollary 10. Theorems 4 and 8 are equivalent.

Proof. ♣ùñq If ♣X, Σ, µ, T q is a p.-p. Z
d-system and A P Σ with µ♣Aq → 0,

then by the Pointwise Ergodic Theorem the limit

f♣xq :✏ lim
NÝÑ✽

1

Nd

➳
nPrNsd

1A♣T
nxq

exists a.s. and satisfies
➩
X

f dµ ✏ µ♣Aq → 0. Hence the set tx P X : f♣xq → 0✉
has positive measure.

However, for each x P X we may apply Theorem 4 to the set of ‘return times’

Ex :✏ tn P Z
d : Tnx P A✉

(which has upper density at least f♣xq) to find some ax P Z
d and nx ➙ 1 such that

tax � nxe1, . . . ,ax � nxed✉ ❸ Ex.

Moreover, it is easy to see that this choice of ax and nx can be made measurably in

x. Since there are only countably many possible such choices, at least one of them

must come up with positive probability inside the set tf → 0✉, so there are a P Z
d

and n ➙ 1 such that

µtx P X : x P T✁a✁neiA ❅i ↕ d✉ → 0.

Applying the probability-preserving transformation T a to this set, we see that it

becomes T✁ne1A❳ ☎ ☎ ☎ ❳ T✁nedA, so this has positive measure, as required.
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♣ðùq This follows at once from Proposition 9: given E with d̄♣Eq → 0, that

proposition produces a system and set with µ♣Aq → 0 and such that the positivity

of µ♣T✁ne1A❳ ☎ ☎ ☎ ❳ T✁nedAq for some n ➙ 1 implies that

♣E ✁ ne1q ❳ ♣E ✁ ne2q ❳ ☎ ☎ ☎ ❳ ♣E ✁ nedq

has positive upper density, and so is certainly nonempty.

2.1 Nonconventional averages and the Furstenberg self-joining

A key aspect of Furstenberg and Katznelson’s approach to Theorems 7 and 8 is

that they give more than just the existence of one suitable time n ➙ 1. In the

multidimensional case, what they actually proved is the following.

Theorem 11 (Multidimensional Multiple Recurrence Theorem). If T : Z
d
ñ

♣X, Σ, µq is a p.-p.s. and A P Σ has µ♣Aq → 0 then

lim inf
NÝÑ✽

1

N

N➳
n✏1

µ♣T✁ne1A❳ ☎ ☎ ☎ ❳ T✁nedAq → 0.

An analogous assertion for a single transformation lies behind Theorem 7. As

in many other applications of ergodic theory, one finds that the averages in n behave

more tamely than the term that appears for any particular value of n, and so are

more amenable to analysis.

In this course, we will prove only one simple special case of Theorem 11 (refer-

ring to [Aus10a] or [Aus10b] for the general case). However, we will also answer a

related and slightly easier question: whether the averages appearing in Theorem 11

actually converge, so that ‘lim inf’ may be replaced with ‘lim’.

Furstenberg and Katznelson’s original proofs show that these non-negative se-

quences stay bounded away from zero, but do not show that their limits actually

exist. Naturally, ergodic theorists quickly went in pursuit of this question in its

own right. It was fully resolved only very recently, by Host and Kra [HK05] for

the averages associated to a single transformation and then by Tao [Tao08] for

those appearing in Theorem 11. Both are challenging proofs, and they are quite

different from one another.

Host and Kra’s argument builds on a long sequence of earlier work by several

ergodic theorists, including [CL84, CL88a, CL88b, Rud95, Zha96, FW96, HK01]

and several further references given there. An alternative proof of the main results

of Host and Kra has been given by Ziegler in [Zie07], also resting on much of

this earlier work. In addition to proving convergence, these efforts have led to a

very detailed description of the limiting behaviour of these averages in terms of

7



certain highly-structured factors of an arbitrary p.-p.s., in some sense generalizing

our identification of the Kronecker factor as the ‘obstruction’ to weak mixing in

the previous notes.

On the other hand, Tao’s proof of convergence for the multidimensional aver-

ages in Theorem 11 departs significantly from these earlier works, proceeding by

first formulating a finitary, quantitative analog of the desired convergence assertion,

and then making contact with the hypergraph-regularity theory developed for the

new combinatorial proofs of Szemerédi’s Theorem in [NRS06, Gow06] (together

with several other original insights in that finitary world).

In these notes, we will recount a more recent ergodic-theoretic proof of conver-

gence, which avoids the transfer to a finitary combinatorial setting that underlies

Tao’s proof, but also avoids the need for the much more detailed description that is

implicit in the earlier approaches (such a description is still largely lacking for the

multidimensional averages).

In fact, instead of the scalar averages appearing in the multiple recurrence the-

orems, it turns out to be more natural to study the functional averages

SN ♣f1, f2, . . . , fdq :✏
1

N

N➳
n✏1

♣f1 ✆ Tne1q ☎ ♣f2 ✆ Tne2q ☎ ☎ ☎ ☎ ☎ ♣fd ✆ Tnedq

for f1, f2, . . . , fd P L✽♣µq. These are related by

1

N

N➳
n✏1

µ♣T✁ne1A❳ ☎ ☎ ☎ ❳ T✁nedAq ✏

➺
X

SN ♣1A, 1A, . . . , 1Aq dµ,

so suitable convergence of the functional averages implies that of the scalar aver-

ages.

Theorem 12 (Convergence of nonconventional ergodic averages). If T : Z
d
ñ

♣X, Σ, µq is a p.-p.s. and f1, f2, . . . , fd P L✽♣µq, then the averages SN ♣f1, f2, . . . , fdq
converge in ⑥ ☎ ⑥2 as N ÝÑ ✽.

Remarks. 1. For d ✏ 1 this is just the usual Norm Ergodic Theorem (restricted

to the case of bounded measurable functions), but for d ➙ 2 the fact that for each

n we multiply shifts of the functions fi under different transformations means that

it is not equivalent. An alternative way to view Theorem 12 is that we consider the

functions

1

N

N➳
n✏1

♣f1 ❜ f2 ❜ ☎ ☎ ☎ ❜ fdq ✆ ♣T
e1 ✂ T e2 ✂ ☎ ☎ ☎ ✂ T edqn

8



on the product space Xd, but instead of proving their convergence in L2♣µ❜dq
(which would again follow from the usual NET) we prove their convergence in the

L2-space of the measure µ∆ which is a copy of µ lifted to the diagonal set

t♣x, x, . . . , xq : x P X✉.

Of course, this diagonal generally has measure zero under µ❜d, so this latter con-

vergence does not follow from the NET or PET.

2. Using routine estimates from functional analysis one can strengthen The-

orem 12 slightly by allowing functions fi P Lpi♣µq such that 1
p1
� ☎ ☎ ☎ � 1

pd
↕ 1

2
,

but we will not pursue this matter here.

3. Similarly to the basic ergodic theorems, it is also interesting to ask whether

the above averages converge pointwise a.s. as N ÝÑ ✽. This question is still open

in almost all cases. Aside from d ✏ 1 (corresponding to the Pointwise Ergodic

Theorem), pointwise convergence is known only for the averages

1

N

N➳
n✏1

♣f1 ✆ Tnq♣f2 ✆ T 2nq :

this is a very tricky result of Bourgain [Bou90]. ⊳

Aside from its natural interest, Theorem 12 is important because it enables a

reformulation of Theorem 11 in terms of a convenient auxiliary construct. Clearly

the fact of multiple recurrence is insensitive to our choosing a compact model.

Having done so, we may consider the measures

µN :✏
1

N

N➳
n✏1

➺
X

δ♣T ne1x,T ne2x,...,T nedxq µ♣dxq on Xd,

so that our N th scalar average may also be written as µN ♣A✂ A✂ ☎ ☎ ☎ ✂ Aq, and

more generally we have

➺
X

SN ♣f1, f2, . . . , fdq dµ ✏

➺
Xd

f1 ❜ f2 ❜ ☎ ☎ ☎ ❜ fd dµN .

The T -invariance of µ implies that each µN has all one-dimensional marginals

equal to µ and is invariant under the diagonal transformations Tn✂Tn✂☎ ☎ ☎✂Tn

for n P Z
d. Therefore each µN is a joining of d copies of the system ♣X, Σ, µ, T q

(a ‘d-fold self-joining’ of this system). Having chosen a compact model, if we

pass to a vaguely convergent subsequence µNi
, then its limit µF also has these

one-dimensional marginals and these invariances, and so is also a self-joining.

9



Next, for any product set A1 ✂ A2 ✂ ☎ ☎ ☎ ✂ Ad the convergence of the averages

SN ♣1A1
, . . . , 1Ad

q, implies that

µF♣A1 ✂ ☎ ☎ ☎ ✂Adq ✏ lim
NÝÑ✽

➺
X

SN ♣1A1
, . . . , 1Ad

q dµ,

so in fact the limit measure µF is unique, and so the whole sequence µN must

converge to it. Moreover, in addition to its invariance under each diagonal trans-

formation Tn ✂ Tn ✂ ☎ ☎ ☎ ✂ Tn, this limit µF is obtained as a limit of increasingly

long averages under the ‘off-diagonal transformation’

~T :✏ T e1 ✂ T e2 ✂ ☎ ☎ ☎ ✂ T ed ,

and so is invariant under this as well.

Definition 13. The joining probability measure µF is the Furstenberg self-joining

of the Z
d-system ♣X, Σ, µ, T q.

We can now reformulate Theorem 11 as follows.

Theorem 14. If ♣X, Σ, µ, T q is a p.-p. Z
d-system and A P Σ then

µF♣A✂A✂ ☎ ☎ ☎ ✂Aq ✏ 0 only if µ♣Aq ✏ 0.

Much of the more recent work in this area has gone into describing the Fursten-

berg self-joining in as much detail as possible. The Furstenberg self-joining will

appear also in the proof of Theorem 12, in which we use its existence for d ✁ 1

transformations during the inductive proof of convergence for d transformations.

2.2 Some easier special cases

The special case of Theorem 7 with k ✏ 3 is rather easier to handle than the general

case, and will allow us to introduce some tools that we will need again later. The

first is a basic estimate which underlies all of our subsequent work. It is a Hilbert-

space version of a classical lemma of van der Corput concerning equidistribution

of sequences (see, for instance, Kuipers and Niederreiter [KN74]).

Lemma 15 (Van der Corput estimate). Suppose that H is a Hilbert space and

♣unqn➙1 is a bounded sequence in H. Then

✎✎✎ 1

N

N➳
n✏1

un

✎✎✎ ⑧ÝÑ 0
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only if

1

H

H➳
h✏1

1

N

N➳
n✏1

①un, un�h② ⑧ÝÑ 0

as N ÝÑ ✽ and then H ÝÑ ✽ (that is, there are some H1 ➔ H2 ➔ . . . and for

each i some Ni,1 ➔ Ni,2 ➔ . . . such that the above scalar averages at Hi and Ni,j

are uniformly bounded away from zero for all i and j).

This lemma is closely related to the proof of the ‘inverse’ result underlying our

approach to the Norm Ergodic Theorem (Notes 2), according to which a function

f whose ergodic averages do not vanish must have a nonzero inner product with

an invariant function. This relationship goes quite deep: we will later use the van

der Corput estimate to deduce other ‘inverse theorems’ for the nonconventional

averages of Theorem 12.

Proof. Assume we have some ε → 0 and N1 ➔ N2 ➔ . . . such that

✎✎✎ 1

Ni

Ni➳
n✏1

un

✎✎✎ ➙ ε ❅i.

For any H ➙ 1 we have

✎✎✎ 1

N

N➳
n✏1

un ✁
1

H

H➳
h✏1

1

N

N➳
n✏1

un�h

✎✎✎ ✏ O
✁H

N

✠
ÝÑ 0 as N ÝÑ ✽,

and so combining these facts gives

lim inf
iÝÑ✽

✎✎✎ 1

H

H➳
h✏1

1

Ni

Ni➳
n✏1

un�h

✎✎✎ ➙ ε ❅H ➙ 1.

In this double average we can now exchange the order of averaging and then

apply the triangle inequality to deduce that

lim inf
iÝÑ✽

1

Ni

Ni➳
n✏1

✎✎✎ 1

H

H➳
h✏1

un�h

✎✎✎ ➙ ε ❅H ➙ 1.

Applying the Cauchy-Schwartz inequality to the average in n here gives

lim inf
iÝÑ✽

1

Ni

Ni➳
n✏1

✎✎✎ 1

H

H➳
h✏1

un�h

✎✎✎2

✏ lim inf
iÝÑ✽

1

H2

H➳
h1,h2✏1

1

Ni

Ni➳
n✏1

①un�h1
, un�h2

② ➙ ε2 ❅H ➙ 1.
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Finally, by breaking the above averages into the two cases th1 ➙ h2✉ and th1 ➔
h2✉ and the re-parameterizing, say, n � h1 as n and h2 ✁ h1 as h, we see that the

expression

1

H2

H➳
h1,h2✏1

1

Ni

Ni➳
n✏1

①un�h1
, un�h2

②

can be written as an average of the expressions

1

H ✶

H ✶➳
h✏1

1

Ni

Ni➳
n✏1

①un, un�h②

over a range of large values of H ✶ (say, H1④2 ↕ H ✶ ↕ H), plus some error that

vanishes as N ÝÑ ✽ (correspondingly, at the rate O♣H1④2④Nq. Hence some of

these latter averages in h and n must also stay large, as required.

This simple estimate is surprisingly powerful. As a first application, one can

deduce that Theorems 12 and 8 actually admit quite quick proofs for systems all of

whose individual transformations are weakly mixing.

Theorem 16. If T : Z
d
ñ ♣X, Σ, µq is such that every individual Tn, n P Z

d, is

weakly mixing (that is, T is totally weakly mixing) then

SN ♣f1, f2, . . . , fdq ÝÑ
✁ ➺

f1 dµ
✠✁ ➺

f2 dµ
✠
☎ ☎ ☎
✁ ➺

fd dµ
✠

in ⑥ ☎ ⑥2 as N ÝÑ ✽. In particular, if µ♣Aq → 0, then setting f1 ✏ . . . ✏ fk ✏ 1A

gives

1

N

N➳
n✏1

µ♣T✁ne1A❳ ☎ ☎ ☎T✁nedAq ÝÑ µ♣Aqk → 0.

A proof can be obtained from Problem Sheet 4.

Matters are not so simple in the absence of weak mixing.

Example. Suppose that Rα ñ ♣T,B♣Tq, mTq is an irrational, and hence ergodic,

circle rotation, and let f1 : t ÞÑ e4πit P C and f2 : t ÞÑ e✁2πit. Then for any n we

have

f1♣t� nαqf2♣t� 2nαq ✏ e4πit�4nπiαe✁2πit✁4nπiα ✏ e2πit,

and so, even though T is ergodic, the averages

1

N

N➳
n✏1

♣f1 ✆ Tnq♣f2 ✆ T 2nq
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are all equal to the non-constant function e2πit. Moreover, by letting A be a non-

trivial level set of f1 and using a little care, one can produce a set A such that
1
N

➦N
n✏1 mT♣A❳ T✁nA❳ T✁2nAq tends to some limit other than mT♣Aq

3. ⊳

By analogy with our previous structure theorem for weak mixing (Notes 5),

our next hope might be that the above examples are the only possible ‘bad guys’.

In fact this is true for the case of T and T 2 (corresponding to the case k ✏ 3 of the

one-dimensional Szemerédi Theorem). For the more complicated cases something

similar, albeit much more involved, takes place: that will not be covered in this

course. In order to make this idea formal we need one more definition.

Definition 17 (Partially characteristic factor). If T : Z
d
ñ ♣X, Σ, µq is a p.-p.s.,

then a factor Λ ↕ Σ is partially characteristic in position i for the averages SN if

⑥SN ♣f1, f2, . . . , fi, . . . , fdq ✁ SN ♣f1, f2, . . . ,E♣fi ⑤Λq, . . . , fdq⑥2

✏ ⑥SN ♣f1, f2, . . . , fi ✁ E♣fi ⑤Λq, . . . , fdq⑥2 ÝÑ 0

as N ÝÑ ✽ for any f1, f2, . . . , fd P L✽♣µq.

We will usually abbreviate ‘partial characteristic in position 1’ to just ‘partially

characteristic’.

The intuition here is that under the transformation T e1 , the fibres of the factor

Λ ↕ Σ becomed ‘twisted up’ in such a complicated way that the movement of

the functions f2, . . . , fd under the other transformations T ei for i ➙ 2 keeps no

track of it, and so asymptotically the behaviour of f1 ✆T e1 on these fibres becomes

independent of the behaviours of these other functions. If one were lucky enough

to find a highly-structured partially characteristic factor Λ, then in trying to prove

convergence one could always replace f1 by E♣f1 ⑤Λq, and so simply reduce to

the case when f1 is Λ-measurable, which might be easier (or perhaps provide the

seed for an argument by induction). Remarkably, this very optimistic idea turns

out to be succesful in giving proofs of both convergence and multiple recurrence,

although we are still some way from understanding which factors Λ will appear in

general and how their structure will be useful for us.

However, in the special case of the averages

SN ♣f1, f2q ✏
1

N

N➳
n✏1

♣f1 ✆ Tn
1 q♣f2 ✆ T 2nq

for a single ergodic p.-p.t. ♣X, Σ, µ, T q it turns out that the Kronecker factor is

partially characteristic in both positions.
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Lemma 18. If ♣X, Σ, µ, T q is ergodic and Λ is its Kronecker factor, and if

⑥SN ♣f1, f2q⑥2 ⑧ÝÑ 0,

then E♣fi ⑤Λq ✘ 0 for both i ✏ 1, 2 (and so Λ is partially characteristic in both

positions).

Proof. We give the proof for f1, the case of f2 being similar. Applying Lemma 15

with

un :✏ ♣f1 ✆ Tnq♣f2 ✆ T 2nq for n ➙ 1,

we obtain that

1

H

H➳
h✏1

1

N

N➳
n✏1

➺
X

♣f1 ✆ Tnq♣f2 ✆ T 2nq♣f1 ✆ Tn�hq♣f2 ✆ T 2n�2hq dµ

✏
1

H

H➳
h✏1

1

N

N➳
n✏1

➺
X

f1♣f2 ✆ Tnq♣f1 ✆ T hq♣f2 ✆ Tn�2hq dµ

✏
1

H

H➳
h✏1

➺
X

f1♣f1 ✆ T hq
✁ 1

N

N➳
n✏1

♣f2 ☎ ♣f2 ✆ T 2hqq ✆ Tn
✠

dµ ⑧ÝÑ 0

as N ÝÑ ✽ and then H ÝÑ ✽, where the first equality follows the Tn-invariance

of µ, and the second by a re-arrangement.

However, the N -limit appearing inside the last integral above can now be eval-

uated by the Norm Ergodic Theorem. Using that T is ergodic, we obtain that

1

H

H➳
h✏1

✁ ➺
X

f1♣f1 ✆ T hq dµ
✠✁ ➺

X

f2♣f2 ✆ T 2hq dµ
✠
⑧ÝÑ 0

as H ÝÑ ✽. By the Cauchy-Schwartz inequality, the non-vanishing of these

implies that also

1

H

H➳
h✏1

✞✞✞
➺

X

f1♣f1 ✆ T hq dµ
✞✞✞2

✏

➺
X2

♣f1 ❜ f1q ☎
1

H

H➳
h✏1

♣♣f1 ❜ f1q ✆ ♣T ✂ T qhq dµ❜2

ÝÑ

➺
X2

♣f1 ❜ f1q ☎ E♣f1 ❜ f1 ⑤ ♣Σ❜ ΣqT✂T q dµ❜2

✘ 0,
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where we have now applied the Norm Ergodic Theorem for the system ♣X2,Σ❜2, µ❜2, T✂2q
to evaluate the H-limit.

Finally, since E♣f1 ❜ f1 ⑤ ♣Σ ❜ ΣqT✂T q is ♣T ✂ T q-invariant, Theorem 8 of

Notes 5 gives that it is ♣Λ ❜ Λq-measurable. Therefore the above non-vanishing

implies also that

E♣f1 ❜ f1 ⑤Λ❜ Λq ✏ E♣f1 ⑤Λq ❜ E♣f1 ⑤Λq ✘ 0

and hence E♣f1 ⑤Λq ✘ 0, as required.

Lemma 18 will imply our special case of Theorem 7 using the following lemma.

Lemma 19. Suppose that G is a compact metric group, U ❸ G is a neighbourhood

of the identity, and g P G. Then there is an L P N such that the set of integers

tn P Z : gn P U✉

has non-empty intersection with every interval in Z of length at least L.

Proof. Let H :✏ tgn : n P Z✉, a closed subgroup of G. Then U ❳ H is a neigh-

bourhood of the identity in H , so it suffices to work within the subgroup H . Equiv-

alently, this means we may assume that tgn : n P Z✉ is dense in G.

Having made this assumption, it follows that the collection of open sets

tgnU✁1 : n P Z✉

covers G, because for any h P G our assumption of density gives some n such that

gn P hU , hence h P gnU✁1. Therefore, by compactness, there is some L ➙ 1 such

that the subfamily tgnU✁1 : 1 ↕ n ↕ L✉ covers G. However, for any m P Z it

now follows that

↕
m�1↕n↕m�L

gnU✁1 ✏ gm
✁ ↕

1↕n↕L

gnU✁1
✠
✏ gmG ✏ G.

Therefore, for any discrete interval tm � 1, . . . ,m � L✉, there is some n in that

interval with gnU✁1 ◗ e, and hence gn P U .

Proof of Theorem 7 in case k ✏ 3. As discussed above, we will show that in this

case

lim inf
NÝÑ✽

➺
X

1A ☎ SN ♣1A, 1Aq dµ → 0,

where SN ♣f1, f2q :✏ 1
N

➦N
n✏1♣f1 ✆ Tnq♣f2 ✆ T 2nq.

First, by the theorem on compact models, we may assume that ♣X,T q is a

topological dynamical system, and also that the factor ΣT of T -invariant sets is
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generated by a continuous factor map ξ : ♣X, Σ, µ, T q ÝÑ ♣Y,Φ, ν, Sq to another

compact model. Since ξ generates the T -invariant sets, we find that S must fix

every Borel set of Y , and this implies that in fact S ✏ idY . Having passed to these

compact models, the measure µ has a disintegration, say

µ ✏

➺
Y

µy ν♣dyq,

as given by Theorem 11 of Notes 4. By the essential uniqueness of this disintegra-

tion, and since µ is T -invariant, one obtains that µy is also T -invariant for a.e. y.

On the other hand, µ♣Aq ✏
➩
Y

µy♣Aq ν♣dyq, so it suffices to prove Theorem 7 for

each of the systems ♣X, Σ, µy, T q for which µy♣Aq → 0.

This is important, because one can now show that µy is be ergodic for T for

a.e. y, so we have reduced our task to the ergodic case. This assertion requires a

little thought, but we relegate it to Problem Sheet 4.

We therefore now assume that µ is ergodic for T . Let Λ be the Kronecker

factor, so it is generated by a factor map

π : ♣X, Σ, µ, T q ÝÑ ♣Z, d,B♣Zq, ν, Rq

whose target is a compact system. Let f :✏ E♣1A ⑤Λq. By Lemma 18 we have

⑥SN ♣1A, 1Aq ✁ SN ♣f, fq⑥2 ÝÑ 0.

Given two real or complex sequences ♣anqn and ♣bnqn, let an ✒ bn stand for the

assertion that an ✁ bn ÝÑ 0. Then the above norm convergence gives

1

N

N➳
n✏1

µ♣A❳ T✁nA❳ T✁2nAq ✏

➺
X

1A ☎ SN ♣1A, 1Aq dµ

✒

➺
X

1A ☎ SN ♣f, fq dµ

✏

➺
X

f ☎ SN ♣f, fq dµ

✏
1

N

N➳
n✏1

➺
X

f♣f ✆ Tnq♣f ✆ T 2nq dµ,

where the equality of the third line follows from the definition of conditional ex-

pectation, because SN ♣f, fq is Λ-measurable. It therefore suffices to show that

these last averages stay uniformly positive for N ÝÑ ✽.

To do this, since f is Λ-measurable, it agrees a.s. with a function lifted from

Z. Let us now write f for that function on Z instead. By basic properties of
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conditional expectation, we have f ➙ 0 and
➩
Z

f dν ✏ µ♣Aq → 0. This implies

that one also has α :✏
➩
Z

f3 dν → 0. It remains to show that these properties imply

1

N

N➳
n✏1

➺
Z

f♣f ✆Rnq♣f ✆R2nq dν → 0.

To prove this, first recall that R is an element of the compact group G :✏
Isom♣Z, dq, metrized by the uniform metric

D♣S, S✶q :✏ sup
zPZ

d♣Sz, S✶zq.

Since f may be approximated in ⑥ ☎ ⑥1 by continuous functions on Z, an easy

exercise shows that there is some δ → 0 such that

S P G, D♣S, idZq ➔ δ ùñ ⑥f ✁ f ✆ S⑥1 ➔ α④4.

Whenever n is such that D♣idZ , Rnq ➔ δ④2, it follows that

D♣idZ , R2nq ↕ D♣idZ , Rnq �D♣Rn, R2nq ➔ δ.

Therefore for such n one has➺
Z

f♣f ✆Rnq♣f ✆R2nq dν →

➺
Z

f3 dν ✁ 2α④4 ✏ α④2.

Finally, Lemma 19 gives some L P N such that the set of n for which this holds

intersects every interval of at least L consecutive integers. These estimates together

now imply that

1

N

N➳
n✏1

➺
Z

f♣f ✆Rnq♣f ✆R2nq dν ➙
N ✁ 2L

N
☎

1

L
☎ ♣α④2q ❅N,

and hence the limit infimum is at least α④2L → 0, as required.

The partially characteristic factor given by Lemma 18 can also be used to prove

convergence in this case. This can be found on Problem Sheet 4. The next notes

will prove convergence in the general case (Tao’s Theorem).
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Topics in Ergodic Theory

Notes 9: Introduction to entropy

1 Systems and processes

As we have seen previously, many natural examples of probability-preserving Γ-

systems arise in the form

♣AΓ,B♣AΓq, ν, Sq
for some compact (often finite) space A and some S-invariant ν P PrAΓ, where

S is the shift-action of Γ on AΓ. Examples of this kind are called shift systems.

We will now study shift systems more closely when Γ ✏ Z
d and A is a finite set,

referred to as the alphabet. Many of the results below can be extended to arbitrary

discrete amenable groups Γ, but we will not explore that generality here.

The largest source of examples of shift systems for Z
d, at least when d ➙ 2,

is statistical physics. For example, in some of the simplest models, A is t✟1✉,
and a configuration in AZ

d

represents the orientation, either ‘up’ or ‘down’, of

the magnetic spins at all the lattice points in the microscopic structure of some

magnetic solid. A shift-invariant measure ν on AZ
d

arises as a descriptor of the

long-run average behaviour of such a system when it is in thermal equilibrium

with its environment: the value ν♣Eq for E ❸ AZ
d

represents the proportion of

time that the microscopic state of the system spends in E.

On the other hand, the proof of Proposition 3 in Notes 4 showed that any p.-p.

system is isomorphic to such an example when A is the Cantor space. Under the

restriction ⑤A⑤ ➔ ✽, this universality no longer holds (some examples will be given

later), but one still expects that shift systems can be extremely general.

Entropy arises as one of the key parameters describing a shift system. It has an

interpretation in statistical physics and probability, but here we will focus on what

it can tell us about the general ergodic theory of shift systems. Good introductions

to those other aspects of entropy can be found, for instance, in [Ell06, Var03].

First, let us set up some nomenclature for comparing abstract systems with shift

systems. Suppose that ♣X, Σ, µ, T q is a Z
d-system and that

Φ : ♣X, Σ, µ, T q ÝÑ ♣AZ
d

,B♣AZ
dq, ν, Sq
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is a factor map to a shift system. Then the output of ϕ may be written in terms of

separate coordinates,

Φ♣xq ✏ ♣ϕnqnPZd

for some maps ϕn : X ÝÑ A, and now the equivariance of Φ requires that

ϕn ✏ ϕ0 ✆ Tn ❅n P Z
d.

Therefore Φ is completely determined by ϕ0, as well as vice-versa. The map

ϕ0 will often be referred to as an observable, and it is finite-valued if ⑤A⑤ ➔ ✽.

Definition 1. An observable of ♣X, Σ, µ, T q is a Borel map ϕ0 : X ÝÑ A to a

compact metric space. It is finite-valued if A is a finite set, and it is generating if

the σ-algebra generated by the collection of maps tϕ ✆ Tn : n P Z
d✉ is the whole

of Σ, up to negligible sets.

A Z
d-process is a tuple ♣X, Σ, µ, T, ϕq in which ♣X, Σ, µ, T q is a p.-p. Z

d-

system and ϕ : X ÝÑ A is a finite-valued observable.

Two of the main questions motivating this last part of the course are the fol-

lowing:

• Given an abstract p.-p. system ♣X, Σ, µ, T q, what are the processes that it

can give rise to?

• Given two shift systems, when are they isomorphic as abstract p.-p. systems?

The second of these questions is essentially another version of the ‘classifi-

cation problem’ mentioned in Notes 1, one of the main foundational problems

in ergodic theory. Naı̈vely, it asks for effective criteria or invariants that classify

p.-p.s.s up to isomorphism. By now it has become clear that among completely

general systems, even for actions of Z, this is asking too much; there are even ab-

stract, rigorous reasons in descriptive set theory why this is so (see, for instance,

Kechris [Kec10] for a general introduction).

However, some partial results are possible. We have already met the different

kinds of mixing as some examples of natural isomorphism-invariants. Entropy will

provide the next important isomorphism-invariant.

We will introduce entropy in three stages:

• first, we introduce Shannon’s original notion of entropy for a probability

distribution on a finite set, and prove some of its basic properties;

• then, we use Shannon entropy to define the entropy rate of a shift system;

2



• finally, we define the Kolmogorov-Sinai entropy of a p.-p. system by con-

sidering the entropy rates of all the processes that it gives rise to.

As our first application of this theory we will discuss its consequences for the

following natural restricted instance of the classification problem:

Given two finite probability spaces ♣rks, νq and ♣rℓs, θq, when are the

Bernoulli shifts ♣rksZ,B♣rksZq, ν❜Z, Sq and ♣rℓsZ,B♣rℓsZq, θ❜Z, Sq iso-

morphic?

Entropy provides a numerical invariant which can sometimes serve to distin-

guish two such Bernoulli shifts. In fact, it turns out that among Bernoulli shifts,

entropy is a complete invariant: if two such shifts do have the same entropy, then

they are isomorphic. This latter result is an extremely deep theorem of Ornstein.

Importantly, the entropy of a Bernoulli shift can be written as a simple formula in

terms of the one-dimensional marginal ν.

Theorem 2 (Ornstein’s Isomorphism Theorem). The Bernoulli shifts above are

isomorphic if and only if the measures ν and θ have the same entropy.

Other nice treatments of this theory include Ornstein’s original monograph [Orn74]

and the more modern textbooks of Rudolph [Rud90] and Kalikow and McCutcheon [KM10].

2 Shannon entropy

2.1 Motivation and definition

Shannon entropy is a quantity associated to a probability distribution on a finite (or

countable) set. Heuristically, it gives some indication of the ‘effective size’ of the

distribution. It has the following intuitive properties:

• on a small set, all probability distributions have relatively small entropy;

• on a large set, the uniform distribution has high entropy, but for a distribution

for which most (not necessarily all) of the mass is concentrated on a much

smaller subset, the entropy is generally much smaller.

In general, of course, there are many parameters that conform to this intuition

somehow. Crucially, the notion of entropy is also supposed to behave well under

forming product measures, and this gives a clue as to how it should be defined.

Suppose that ν ✏ ♣ν1, ν2, . . . , νkq is a probability distribution on rks. Consider

some very large integer N ➙ 1, and form the product measure ν❜N on rksN . Also

fix some small ε P ♣0, 1q, and consider the following question:
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What is the minimal cardinality of a subset T ❸ rksN for which

ν❜N ♣T q → 1 ✁ ε (that is, ‘what is the effective size of the support

of ν❜N , up to an error set of small measure?’)?

Of course, determining that answer precisely is generally extremely delicate.

However, intuitively the answer should grow exponentially in N (up to subexpo-

nential corrections), at least if we judge by the case in which ν is the uniform

measure, for which T should simply be a subset of rksN that contains at least

♣1✁ εqkN points. So let us seek to evaluate the coefficient in this exponential.

To do this, first observe that by the Law of Large Numbers, if N is large enough

and a string ω ✏ ♣ωnqn↕N is drawn at random from ν❜N , then for each i ↕ k the

frequency of the value i in the string ω should be roughly νi. Letting fi♣ωq be this

frequency, it follows that one candidate set which should carry most of ν❜N is the

following:

↕
♣n1, n2, . . . , nkq P N

k :➦
i ni ✏ N & ♣νi ✁ δqN ↕ ni ↕ ♣νi � δqN ❅i

tω : fi♣ωq ✏ ni ❅i ↕ k✉

for any δ → 0 (where for given error-tolerance ε → 0, any δ → 0 will work but N

will need to be large enough in terms of δ). In information theory, this is called the

δ-typical set for ν. Let us denote it Tν,δ,N .

Now, the number of integer vectors ♣n1, n2, . . . , nkq such that
➦

i ni ✏ N and

♣νi ✁ δqN ➔ ni ➔ ♣νi � δqN for all i is at most Nk. Given such an integer

sequence, the size of tω : fi♣ωq ✏ ni ❅i✉ is simply given by the multinomial

coefficient
N !

n1!n2! ☎ ☎ ☎nk!
.

We can now obtain an approximate answer to the above question as a conse-

quence of Stirling’s Approximation,

N ! ✏ ♣1� o♣1qq ☎
❄

2π
❄

Ne✁NNN as N ÝÑ ✽.

Applying this to each factorial in the multinomial coefficient above gives

1

♣2πq♣k✁1q④2
☎

❄
N❄

n1n2 ☎ ☎ ☎nk

☎ NN

nn1

1 nn2

2 ☎ ☎ ☎nnk

k

.

(where the factor e✁N cancels exactly with the factors e✁ni because
➦

i ni ✏ N ).

Now, bearing in mind that we seek only an exponential growth rate in N , we may
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ignore the first two factors here. Defining ν✶i :✏ ni④N , what remains can now be

re-arranged to obtain

N !

n1!n2! ☎ ☎ ☎nk!

✏ exp♣N log Nq
exp♣ν✶1N log♣ν✶iNq � . . .� ν✶kN log♣ν✶kNqq

✏ exp♣N log Nq
exp♣ν✶1N log N � . . .� ν✶kN log Nq exp♣♣ν✶1 log ν✶1 � . . .� ν✶k log ν✶kqNq ,

using the identity log♣abq ✑ log a� log b.

Finally, since ν✶1 � . . .� ν✶k ✏ 1, the numerator and the first exponential in the

denominator here cancel to leave

N !

n1!n2! ☎ ☎ ☎nk!
✏ exp♣✁♣ν✶1 log ν✶1 � . . .� ν✶2 log ν ✶2qN � o♣Nqq.

Since we have assumed that ⑤νi ✁ ν✶i⑤ ➔ δ for all i, this is equal to

exp♣✁♣ν1 log ν1 � . . .� ν2 log ν2qN �O♣c♣δqNqq

for some c♣δq which tends to 0 as δ ÝÑ 0. Since Tν,δ,N is a union of fewer than

Nk sets all of this size up to subexponential corrections, it follows this is also the

approximate size of Tν,δ,N .

On the other hand, all strings in the set tω : fi♣ωq ✏ ni ❅i✉ have the same

probability under ν, equal to νn1

1 νn2

2 ☎ ☎ ☎ νnk

k . Any set T that carries at least 1✁ε of

the mass of ν❜N must contain at least ♣1✁ εq-proportion of that set tω : fi♣ωq ✏
ni ❅i✉ for which this probability is maximized, and that propertion will still have

size approximately exp♣✁♣ν1 log ν1 � . . . � ν2 log ν2qNq up to subexponential

corrections. Therefore this is the answer to our question up to exponential accuracy.

Definition 3. The quantity

H♣νq :✏ ✁♣ν1 log ν1 � . . .� νk log νkq

is called the Shannon entropy of ν. Intuitively, it is the exponential growth rate of

the ‘effective number’ of different strings in rksN that one stands a good chance of

seeing if one draws such a string at random from ν❜N .

Thus, this definition is a natural consequence of the exponential behaviour of

multinomial coefficients, as provided by Stirling’s approximation.
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2.2 First properties

We next record some simple properties of the entropy functional. The first can be

proved by elementary calculus, and the second and third then follow from simple

calculations and the cancavity proved in the first. They can also be proved by

using the defining property of Shannon entropy and counting typical sets, but this

is generally a more tedious approach.

Lemma 4. The function

r0,✽q ÝÑ R : t ÞÑ
✧

0 if t ✏ 0

✁t log t if t → 0

is strictly concave and crosses the X-axis at 0 and 1 (so it is strictly positive on

♣0, 1q).
Corollary 5. For a fixed finite set A, the entropy functional

Pr A ÝÑ r0,✽q : ν ÞÑ H♣νq

is continuous, strictly concave, has image equal to r0, log ⑤A⑤s, achieves 0 only on

the point masses and achieves log ⑤A⑤ only on the uniform distribution.

Lemma 6. If ν1, ν2 are probability measures on A1 and A2, and µ P Pr♣A1✂A2q
is a coupling of ν1 and ν2, then

H♣µq ↕ H♣ν1q �H♣ν2q,

with equality if and only if µ ✏ ν1 ❜ ν2.

By the continuity of H on PrA and the compactness of this space, the second

part of this last lemma easily implies the following ‘coercivity property’:

Corollary 7. For every finite sets A1, A2 and ε → 0 there is some δ → 0 (depending

on ε, ⑤A1⑤ and ⑤A2⑤) such that whenever νi P PrAi for i ✏ 1, 2, if µ is a coupling

of ν1 and ν2 for which

H♣µq → H♣ν1q �H♣ν2q ✁ δ

then ⑥µ✁ ν1 ❜ ν2⑥TV ➔ ε.

Lemma 8 (Data-processing inequality). Let A and B be finite sets, ν P PrA and

ϕ : A ÝÑ B. Then

H♣ϕ✝µq ↕ H♣µq.
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Proof. This provides a nice illustration of a proof in terms of typical sets. Let ε →
0, and suppose that T ❸ AN is a set of minimal cardinality such that ν❜N ♣T q →
1✁ ε. Then the set

S :✏ ϕ✂N ♣T q ✏ t♣ϕ♣a1q, . . . , ϕ♣aN qq : ♣a1, . . . , aN q P T ✉ ❸ BN

satisfies

♣ϕ✝νq❜N ♣Sq ✏ ν❜N ♣T q → 1✁ ε,

and has ⑤S⑤ ↕ ⑤T ⑤, as an image of T .

2.3 Conditional entropy

Suppose now that A and B are finite sets, that λ P Pr♣A✂Bq, and that ν and µ are

the marginals of λ on A and B. Let π : A✂B ÝÑ A be the coordinate projection.

We may of course disintegrate λ over π:

λ ✏
➺

A

δa ❜ λa ν♣daq, (1)

where λa P PrB is the conditional law of the B-coordinate given that the A-

coordinate equals a (writing this as an integral, even though A is finite).

Definition 9. In the above setting, the conditional Shannon entropy of λ given π

is

H♣λ ⑤πq :✏
➺

A

H♣λaq ν♣daq.

In the first place, conditional entropies are important because of their involve-

ment in the calculation of the ordinary entropy of λ.

Lemma 10. In the above setting, one has

H♣λq ✏ H♣νq �H♣λ ⑤πq.

Proof. This is just a calculation using (1) and properties of log:

H♣λq ✏ ✁
➳
a,b

λt♣a, bq✉ log λt♣a, bq✉ ✏ ✁
➳
a,b

νta✉λatb✉ log♣νta✉λatb✉q

✏ ✁
➳
a

♣νta✉ log νta✉q
➳
b

λatb✉ ✁
➳
a

νta✉
➳
b

λatb✉ log λatb✉

✏ H♣νq �H♣λ ⑤πq.
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Corollary 11. If λ1, . . . , λk P PrA and λ ✏ ➦k
i✏1 piλi is a convex combination

of them using some probability vector ♣p1, . . . , pkq, then

H♣λq ↕ H♣p1, . . . , pkq �
k➳

i✏1

piH♣λiq.

Proof. Define the measure λ̃ on rks ✂A by

λ̃♣i, aq :✏ piλita✉.

This is a probability measure with marginals ♣p1, . . . , pkq on rks and λ on A. Since

λ is an image-measure of λ̃, the Data-Processing Inequality gives H♣λq ↕ H♣λ̃q;
on the other hand, the preceding lemma gives

H♣λ̃q ✏ H♣p1, . . . , pkq �
k➳

i✏1

piH♣λiq.

3 The entropy rate of a shift system

Now suppose that ♣AZ
d

,B♣AZ
dq, ν, Sq is a shift Z

d-system with a finite alphabet.

For any subset F ❸ Z
d, let

ϕF : AZ
d ÝÑ AF

be the coordinate projection, and let νF :✏ ϕF
✝ µ, the marginal distribution of the

coordinates indexed by F .

Motivated by the results above for a sequence of i.i.d. A-valued random vari-

ables, we will now study the growth rate of the ‘effective support’ of the probability

measures νF P PrAF .

Having defined Shannon’s entropy functional H in the previous section, this is

most easily done by considering the entropy-values

H♣νF q

as F increases through a sequence of rectangular boxes in Z
d.

Lemma 12. Given ν, the map F ÞÑ H♣νF q, defined on finite subsets of Z
d, has the

following properties:

i) if E ❸ F ❸ Z
d, then H♣νEq ↕ H♣νF q;

8







ii) one has H♣νE❨F q ↕ H♣νEq �H♣νF q for all E,F ❸ Z
d.

Proof. If E ❸ F , then νE ✏ ϕ
F,E
✝ νF , where ϕF,E : AF ÝÑ AE is the coordinate-

projection. Therefore part (i) follows from the data-processing inequality.

For part (ii), suppose first that E ❳ F ✏ ❍. Then νE❨F P Pr ♣AE ✂AF q is a

coupling of νE and νF , so Lemma 6 gives

H♣νE❨F q ↕ H♣νEq �H♣νF q.

For general E and F , the desired result now follows by combining this special case

with assertion (i), since

H♣νE❨F q ✏ H♣νE❨♣F ③Eqq ↕ H♣νEq �H♣νF ③Eq ↕ H♣νEq �H♣νF q.

A subset of Z
d will be called a rectangle if it is the intersection of Z

d with a

bounded rectangle in R
d.

The subadditivity of the previous lemma implies that the values H♣νF q have

a well-defined asymptotic behaviour which is exponential in ⑤F ⑤ as F increases

through a sequence of rectangles. The following may be seen as a higher-dimensional

analog of Fekete’s Lemma (that is, the classical convergence result for subadditive

sequences).

Lemma 13. Given ν there is some h ➙ 0 with the following property. For every

ε → 0 there is an L → 0 such that whenever R ❸ Z
d is a rectangle with all sides

having length at least L, one has

h⑤R⑤ ↕ H♣νRq ↕ ♣h� εq⑤R⑤.

Proof. Let

h :✏ inf
✥⑤C⑤✁1H♣νCq : C ❸ Z

d a rectangle
✭
.

We will show that this h has the asserted property. Given ε → 0, pick a rectangle

C such that

⑤C⑤✁1H♣νCq ➔ h� ε.

Now choose L P N large enough that the following holds:

If R ⑨ Z
d is a rectangle with all side-lengths at least L, then there is a

pairwise-disjoint family C ✏ ♣C1, C2, . . . , Ckq of translates of C, all

contained in R, such that

⑤C1 ❨ C2 ❨ . . .❨ Ck⑤ ➙ ♣1✁ εq⑤R⑤.
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Having chosen this family C, let D :✏ R③♣C1 ❨ C2 ❨ ☎ ☎ ☎ ❨ Ckq. Now a repeated

application of Lemma 12 gives

H♣νRq ↕
k➳

i✏1

H♣νCiq�H♣νDq ↕ kH♣νCq� ⑤D⑤H♣νq ➔ k⑤C⑤♣h� εq� ε⑤R⑤H♣νq,

using that H♣νCiq ✏ H♣νCq for all i, since ν is shift-invariant.

Since the sets Ci are disjoint and are all contained in R, the right-hand side

above is not greater than

h⑤R⑤ � ε♣1�H♣νqq⑤R⑤,
so, since ε → 0 was arbitrary, this gives the desired upper bound.

On the other hand, one always has

H♣νRq ➙ h⑤R⑤
by the definition of h, so this completes the proof.

Definition 14. The quantity h of the previous lemma is called the entropy rate (or

specific entropy, or sometimes just entropy) of the shift system ♣AZ
d

,B♣AZ
dq, ν, Sq.

It is denoted h♣νq.
If ♣X, Σ, µ, T, ϕq is a process, then its entropy rate, denoted h♣µ, T, ϕq, is

defined to be the entropy rate of the resulting shift system obtained from the factor

map

♣ϕ ✆ TnqnPZd : ♣X, Σ, µ, T q ÝÑ ♣AZ
d

,B♣AZ
dq, ν, Sq.

3.1 The Shannon-McMillan Theorem

Having defined the entropy rate, we next turn to the first important theorem about

it. It generalizes the simple fact that given ν P PrA, once N is large, the mea-

sure ν❜N is mostly supported on the set Tν,δ,N of typical sequences, and gives all

typical sequences roughly the same probability, to leading exponential order. This

phenomenon generalizes to a shift system as follows.

Theorem 15 (Shannon-McMillan Theorem for Z
d-systems). Let ⑤A⑤ ➔ ✽, and let

ν P PrAZ
d

be an ergodic shift-invariant measure. Let h :✏ h♣νq. Then for every

ε → 0 there is some L P N for which the following holds:

Whenever R ❸ Z
d is a finite rectangle with all side-lengths at least L,

there is a subset Y ❸ AR such that

• νR♣Y q → 1✁ ε, and
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• every a ✏ ♣anqnPR P Y satisfies

e✁♣h�εq⑤R⑤ ➔ νR♣ta✉q ➔ e✁♣h✁εq⑤R⑤.

The ergodicity is crucial here. A first consequence of this result is that, as in

the i.i.d. case, once a rectangle R is sufficiently large, the ‘effective support’ of

the probability distribution νR P Pr♣ARq has size roughly eh⑤R⑤, and this effective

size is realized by a sets of tuples in AR that all have roughly the same probability

under νR.

Theorem 15 is proved by showing that the quantities of interest are a kind of

‘perturbation’ of ergodic averages. Then, on the one hand, one applies the Mean

Ergodic Theorem to those averages, and on the other one shows that the ‘perturba-

tion’ becomes negligible as N ÝÑ ✽.

The key to controlling the perturbation is the following basic inequality about

entropy. Recall that if S is any set and f : S ÝÑ R, then f� :✏ maxtf, 0✉.
Lemma 16. If µ and ν are two probability measures on a finite set S, then

➺
S

♣✁ log µts✉ � log νts✉q� µ♣dsq ↕ e✁1.

Proof. Let T :✏ ts P S : µts✉ ↕ νts✉✉, so the integral of interest equals

➳
sPT

µts✉
✁
✁ log

µts✉
νts✉

✠
✏
➳
sPT

νts✉
✁
✁ µts✉

νts✉ log
µts✉
νts✉

✠
.

Since we restrict s to the set T on which
µts✉
νts✉ ↕ 1, this sum is bounded by

➳
sPT

νts✉ ☎ max
0↕t↕1

♣✁t log tq ↕ max
0↕t↕1

♣✁t log tq ✏ e✁1,

where the last equality is a simple calculus exercise.

Now consider a shift system ♣AZ
d

,B♣AZ
dq, ν, Sq, and for any finite subset F ❸

Z
d let

fF : AZ
d ÝÑ r0,✽q : a ÞÑ

✧ ✁ log νF tϕF ♣aq✉ if νF tϕF ♣aq✉ → 0

0 if νF tϕF ♣aq✉ ✏ 0.

Note that, by definition, νF tϕF ♣aq✉ → 0 for ν-a.e. a, so we are always in the first

of these situations oustide of some ν-negligible event. We may also observe that

νF tϕF ♣aq✉ ✏ ν♣ta✶ : ϕF ♣a✶q ✏ ϕF ♣aq✉q,
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so for each a P AZ
d

, we are effectively considering the event for another configu-

ration a✶ P AZ
d

that a✶ and a agree at the coordinates indexed by F , and recording

(the negative logarithm of) the probability of this event.

This fF is called the information function of the measure νF . Its first impor-

tant property is the following simple calculation:

Lemma 17. One has ➺
fF dν ✏ H♣νF q.

In light of this calculation, the information function is often interpreted as a

way of ‘localizing’ the total entropy H♣νF q to individual points of the space.

Corollary 18. If F ✏ C1 ❨C2 ❨ ☎ ☎ ☎ ❨Cm is a finite partition of a finite subset of

Z
d, then ➺

AZd

✁
fF ✁

m➳
i✏1

fCi

✠�
dν ↕ e✁1.

Proof. Let S :✏ AF ✏ AC1 ✂ ☎ ☎ ☎ ✂ ACm , and, for a tuple a P AF , let a⑤Ci
be its

projection onto the coordinates indexed by Ci. On AF , consider the two measures

νF and νC1 ❜ νC2 ❜ ☎ ☎ ☎ ❜ νCm .

In terms of these measures, the integral in question may be written as

➺
AF

✁
✁ log νF ta✉ �

m➳
i✏1

log νCita⑤Ci
✉
✠�

νF ♣daq

✏
➺

AF

✁
✁ log νF ta✉ � log♣νC1ta⑤C1

✉ ☎ νC2ta⑤C2
✉ ☎ ☎ ☎ νCmta⑤Cm✉q

✠�
νF ♣daq

✏
➺

AF

✁
✁ log νF ta✉ � log♣νC1 ❜ ☎ ☎ ☎ ❜ νCmqta✉

✠�
νF ♣daq.

This is of the form considered in Lemma 16, so it is bounded above by e✁1, as

required.

Proof of Theorem 15. First observe that the desired conclusion will follow if we

show that

⑥⑤R⑤✁1fR ✁ h⑥1 ÝÑ 0 as ♣min. side-length of Rq ÝÑ ✽,

because

⑥⑤R⑤✁1fR ✁ h⑥1 ✏
➺ ⑤ ✁ log νR♣ta✉q ✁ h⑤R⑤⑤

⑤R⑤ νR♣daq.
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This already makes the result look very like the Norm Ergodic Theorem, except

that the function ⑤R⑤✁1fR is not a conventional ergodic average over the set of

group-elements R. The key will be to make a comparison with a genuine ergodic

average.

Step 1. Let ε → 0, and choose a rectangle C0 so large that

H♣νC0q ➔ ♣h� εq⑤C0⑤

(as is possible by Lemma 13). By translating and further enlarging C0 if necessary,

we may assume that it equals rLsd for some L P N.

Now, the function g :✏ ⑤C0⑤✁1fC0
: AZ

d ÝÑ r0,✽q takes only finitely-

many values, so is certainly in L1♣νq. We may therefore apply the Norm Ergodic

Theorem for the action of the subgroup L ☎Zd ↕ Z
d, to conclude that the averages

1

Md

➳
mPrMsd

g ✆ SL☎m

converge in ⑥ ☎ ⑥1 to some function g P L1♣µq which is invariant under SL☎m for all

m P Z
d.

By Lemma 17,
➩
g dν ✏ ⑤C0⑤✁1H♣νC0q ✓ h. If we knew that the subgroup

L ☎Zd acted ergodically under S, then the Norm Ergodic Theorem would give that

g is a.s. equal to this constant ⑤C0⑤✁1H♣νC0q. However, since we do not know that

this subgroup acts ergodically in general, we must be a little more careful.

Step 2. Now suppose v P C0, and let C1 :✏ rMLsd � v for some large M .

One sees easily that C0�L☎m ❸ C1 for all m P rM✁1sd, and that these translates

of C0 are pairwise-disjoint. Let

D :✏ C1③
↕

mPrM✁1sd

♣C0 � L ☎mq,

so ⑤D⑤ ✏ ⑤C1⑤ ✁ ♣M ✁ 1qdLd ✏ O♣⑤C1⑤④Mq.
Out next step is to control ⑥⑤C1⑤✁1fC1

✁ g⑥1. The key is to start by controlling
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only the positive part of this function. We have➺
♣⑤C1⑤✁1fC1

✁ gq� dν ↕ ⑤C1⑤✁1

➺ ✁
fC1

✁
➳

mPrM✁1sd

fC0
✆ SL☎m

✠�
dν

�
➺ ✁ ⑤C0⑤

⑤C1⑤
➳

mPrM✁1sd

g ✆ SL☎m ✁ g
✠�

dν

↕ ⑤C1⑤✁1

➺ ✁
fC1

✁
➳

mPrM✁1sd

fC0
✆ SL☎m ✁ fD

✠�
dν

�⑤C1⑤✁1

➺
fD dν

�
✎✎✎ 1

♣M ✁ 1qd
➳

mPrM✁1sd

g ✆ SL☎m ✁ g
✎✎✎
1
,

using that ⑤C1⑤✁1fC0
✏ M✁dg. All three of these right-hand terms are now easily

controlled:

• The first term is at most ⑤C1⑤✁1e✁1, by Corollary 18, so this certainly tends

to 0 as M ÝÑ ✽.

• By Lemma 17 and Corollary 18, the second term is equal to

⑤C1⑤✁1H♣νDq ↕ ⑤D⑤
⑤C1⑤H♣νq ✏ O

✁H♣νq
M

✠
,

which tends to 0 as M ÝÑ ✽.

• The last term tends to zero as M ÝÑ ✽ by the Norm Ergodic Theorem.

Therefore ➺
♣⑤C1⑤✁1fC1

✁ gq� dν ÝÑ 0 (2)

as M ÝÑ ✽. On the other hand, Lemma 17 gives

➺
⑤C1⑤✁1fC1

dν ✏ ⑤C1⑤✁1H♣νC1q ➙ h → ⑤C0⑤✁1H♣νC0q ✁ ε

✏
➺
⑤C0⑤✁1fC0

dν ✁ ε ✏
➺

g dν ✁ ε.

Combining this with (2), one obtains that➺
♣g ✁ ⑤C1⑤✁1fC1

q� dν ↕
➺
♣g ✁ ⑤C1⑤✁1fC1

q dν �
➺
♣⑤C1⑤✁1fC1

✁ gq� dν ➔ ε
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for all sufficiently large M , and hence in fact

⑥g ✁ ⑤C1⑤✁1fC1
⑥1 ➔ ε (3)

for all sufficiently large M .

Step 3. Moreover, these last inequalities hold uniformly in our initial choice

of ‘shift vector’ v P C0: that is, once M is sufficiently large, we have

⑥♣MLq✁1frMLsd ✁ g ✆ S✁v⑥1 ✏ ⑥♣MLq⑤✁1frMLsd�v ✁ g⑥1 ➔ ε ❅v P C0,

and hence also

✎✎✎♣MLq✁1frMLsd ✁
1

Ld

➳
vPC0

g ✆ S✁v
✎✎✎
1
➔ ε.

Now another look at the Norm Ergodic Theorem, together with the ergodicity of ν,

gives that

1

Ld

➳
vPC0

g ✆ S✁v ✏ lim
MÝÑ✽

1

♣MLqd
➳

vPC0

➳
mPrMsd

g ✆ SLm✁v

✏ lim
MÝÑ✽

1

♣MLqd
➳

uPrMLsd

g ✆ T u ✏
➺

g dν ✏ ⑤C0⑤✁1H♣νC0q.

Therefore we have shown that

⑥⑤C1⑤✁1fC1
✁ h⑥1 ➔ ⑥⑤C1⑤✁1fC1

✁ ⑤C0⑤✁1H♣νC0q⑥1 � ε ➔ 2ε

provided C1 is any rectangle with all side lengths sufficiently large.

Step 4. Finally, let M be large enough for the conclusion of Step 3, and let R

be any rectangle all of whose sides are much longer than ML. Then, provided they

are long enough, one can find a family of vectors V ❸ Z
d such that the translates

rMLsd � v for v P V are pairwise disjoint and all contained in R, and such that

E :✏ R③
↕
vPV

♣rMLsd � vq

has ⑤E⑤ ↕ ε⑤R⑤④H♣νq. Having done so, another appeal to Corollary 18 in the same

way as in Step 2 gives

➺ ✁
⑤R⑤✁1fR ✁ ⑤V ⑤✁1

➳
vPV

♣MLq✁dfrMLsd�v

✠�
dν ➔ ε
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provided R is sufficiently large, and now, again as in Step 2, this implies that✎✎✎⑤R⑤✁1fR ✁ ⑤V ⑤✁1
➳
vPV

♣MLq✁dfrMLsd�v

✎✎✎
1
➔ 2ε

provided R is large enough. Combining this with the conclusion of Step 3, it

follows that

⑥⑤R⑤✁1fR ✁ h⑥ ➔ 4ε

for all sufficiently large rectangles R. Since ε → 0 was arbitrary, this completes the

proof.

The original Shannon-MacMillan Theorem was for Z-systems, and is referred

to in Information Theory as the Asymptotic Equipartition Property: see, for in-

stance, [CT06, Chapter 3]. I believe the proof above (in the more general setting

of amenable groups) is due to Moulin Ollagnier [MO83], building on earlier work

of Kieffer [Kie75]. A nice presentation for general amenable groups can be found

in [MO85, Section 4.4].

The theorem also has a strengthening to a pointwise-convergence result, due to

Breiman, but the proof of that is rather trickier, and we will not use it in this course.

Theorem 19 (Shannon-McMillan-Breiman Theorem for Z
d-actions). Given an er-

godic ν P PrS AZ
d

as before, one has

N✁dfrNsd♣aq ÝÑ h for ν-a.e. a P AZ
d

.

The most immediate consequence of Theorem 15 is that we may reconnect

with our initial intuition about the meaning of entropy.

Corollary 20. In the setting of Theorem 15, for any α P ♣0, 1q, one has

mint⑤T ⑤ : T ❸ AR, νR♣T q ➙ α✉ ✏ eh⑤R⑤�o♣⑤R⑤q

as the minimal side-length of R tends to ✽.

Proof. Fix α P ♣0, 1q and also ε → 0, and let

TR :✏ ta P AR : e✁♣h�εq⑤R⑤ ➔ νR♣ta✉q ➔ e✁♣h✁εq⑤R⑤✉.
By Theorem 15, νR♣TRq ÝÑ 1 as R increases, and so for large enough R the re-

quired minimum is bounded above by ⑤TR⑤. Since every a P TR satisfies νR♣ta✉q →
e✁♣h�εq⑤R⑤, one has

1 ➙ νR♣TRq ➙ ⑤TR⑤e✁♣h�εq⑤R⑤ ùñ ⑤TR⑤ ↕ e♣h�εq⑤R⑤.
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On the other hand, if νR♣T q ➙ α and R is so large that νR♣TRq → 1 ✁ α④2,

then also νR♣T ❳ TRq ➔ α④2. This requires that

α④2 ➔
➳

aPT❳TR

νR♣ta✉q ↕ ⑤T ⑤e✁♣h✁εq⑤R⑤ ùñ ⑤T ⑤ ➙ e♣h✁εq⑤R⑤�log♣α④2q.

Since these estimates both hold for large enough R for any ε → 0, this com-

pletes the proof.

3.2 Affinity of the entropy rate

Theorem 15 will underly much of the later material in the course, but it applies

only to ergodic measures. In some cases one cannot assume this, so we need to

know what happens in the non-ergodic setting.

Happily, the situation is very simple. First recall that the set of invariant mea-

sures PrS AZ
d

is a nonempty, compact, convex set for the vague topology. The

entropy rate defines a function h : PrS AZ
d ÝÑ r0,✽s. It need not be continuous

for the vague topology, but it is at least measurable, because

h♣νq ✏ lim
LÝÑ✽

L✁dH♣νrLsdq,

and each function inside the right-hand limit is continuous, since it depends only

on the finite marginal νrLs
d P PrArLsd and H is continuous on PrArLsd .

Also, any ν P PrAZ
d

has an essentially unique ergodic decomposition: that it,

a disintegration of the form

ν ✏
➺

Y

νy θ♣dyq,

where Y is an auxiliary compact metric space and the map y ÞÑ µy : Y ÝÑ
PrS AZ

d

is measurable and takes values among the ergodic measures.

Proposition 21 (Affinity of the entropy rate). For any convex combination of in-

variant measures ν ✏ ➩
Y

νy θ♣dyq on AZ
d

(not necessarily a disintegration), one

has

h♣νq ✏
➺

Y

h♣νyq θ♣dyq.

Proof. Step 1. By definition,➺
Y

h♣νyq θ♣dyq ✏
➺

Y

inf
R rectangle

⑤R⑤✁1H♣νR
y q θ♣dyq,

and Lemma 13 shows that this is the same as➺
Y

inf
LÝÑ✽

L✁dH♣νrLsdy q θ♣dyq ✏
➺

Y

lim
LÝÑ✽

L✁dH♣νrLsdy q θ♣dyq. (4)
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Now, all of the quantities L✁dH♣νrLsdy q are non-negative, and also they are all

bounded by

L✁d ☎ Ld ☎H♣νyq ↕ log ⑤A⑤,
by Lemma 12 and then Corollary 5. Therefore the Dominated Convergence Theo-

rem applies to the above right-hand integral in (4), equating it with

lim
LÝÑ✽

L✁d

➺
Y

H♣νrLsdy q θ♣dyq.

This limit is greater than or equal to

inf
L➙1

L✁d

➺
Y

H♣νrLsdy q θ♣dyq,

but on the other hand, the left-hand integral in (4) is bounded above by this last

infimum, so in fact all of these quantities are equal.

Step 2. Now fix an L. Suppose that C ❸ Y is measurable and θ♣Cq → 0,

and let νC :✏ θ♣Cq✁1
➩
C

νy θ♣dyq. Since the function H is concave on PrArLsd ,

Jensen’s Inequality gives

H♣νrLsdC q ➙ θ♣Cq✁1

➺
C

H♣νrLsdy q θ♣dyq.

If P is a partition of Y into positive-measure pieces, then we may average the

above inequality over those pieces to obtain

➳
CPP

H♣νrLsdC q ➙
➺

θ♣CqH♣νrLsdy q θ♣dyq. (5)

On the other hand, the map y ÞÑ ν
rLsd
y is continuous and takes values in the

compact set PrArLsd , by Corollary 5. Therefore, if P is such that each of the sets

tνrLsdy : y P Ci✉ for i ✏ 1, 2, . . . , k has sufficiently small diameter in PrArLsd ,

then we may bring inequality (5) as close as we please to an equality. Combining

this with the conclusion of Step 1, it follows that➺
Y

h♣νyq θ♣dyq ✏ inf
L➙1

inf
P

L✁d
➳

CPP

θ♣CqH♣νrLsdC q ✏ inf
P

inf
L➙1

L✁d
➳

CPP

θ♣CqH♣νrLsdC q.

Step 3. It therefore suffices to show that

lim
LÝÑ✽

L✁dH♣νrLsdq ✏ lim
LÝÑ✽

L✁d
➳

CPP

θ♣CqH♣νrLsdC q
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for any such partition P . Since

ν ✏
➳

CPP

θ♣CqνC ,

another appeal to the concavity of H gives the inequality ➙, so we need only prove

↕. To this purpose, Corollary 11 gives

H♣νF q ↕ H
�♣θ♣CqqCPP✟� ➳

CPP

θ♣CqH♣νrLsdC q,

writing ♣θ♣CqqCPP for the probability vector given by the ν-measures of the cells

C P P . Since that is a fixed finite quantity (indeed, it is bounded by log ⑤P⑤), we

may divide by Ld and send L ÝÑ ✽ to obtain

lim
LÝÑ✽

L✁dH♣νrLsdq ↕ lim
LÝÑ✽

L✁d
➳

CPP

θ♣CqH♣νrLsdC q,

as required.

A more complete version of Proposition 21 can be obtained if one recalls that

the ergodic decomposition may be realized as follows: if Φ ↕ B♣AZ
dq is the σ-

algebra of invariant sets and ν P PrS AZ
d

, then the theorem on compact models

gives a measurable, shift-invariant map π : AZ
d ÝÑ Y which generates Φ up to ν-

negligible sets, and now y ÞÑ νy may be defined on this space Y with the property

that νy♣π✁1ty✉q ✏ 1 for ν-a.e. y.

Lemma 22. Let ν ✏ ➩
Y

νy θ♣dyq be as above, and let fF denote the information

function as in the proof of Theorem 15. Then

⑥⑤R⑤✁1fR ✁H♣νπ♣yqq⑥L1♣νq ÝÑ 0

as the minimum side-length of R tends to ✽.

Proof. Theorem 15 shows that this holds for each of the norms ⑥ ☎ ⑥L1♣νyq for indi-

vidual y, and the norm ⑥ ☎ ⑥L1♣νq is just the average of these.

Remark. Theorem 15 and Corollary 20 can both fail for non-ergodic measures; this

is easily seen using Proposition 21 and some simple examples. ⊳
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Topics in Ergodic Theory

Notes 10: Entropy of abstract systems

In the previous notes we introduced the Shannon entropy of a finitely-supported

probability measure and the entropy rate of a shift system, and we proved the

Shannon-McMillan Theorem, which asserted roughly that the marginal of a shift-

invariant measure on a large enough rectangle is roughly uniformly supported on a

certain collection of configurations.

Formally, the means of turning the entropy rate of shift systems into an isomor-

phism invariant of abstract systems is very simple: one simply supremizes over all

shift-system factors.

Definition 1. If ♣X,Σ, µ, T q is a p.-p. Z
d-system, then its Kolmogorov-Sinai

(‘KS’) entropy (or just entropy, or metric entropy in older texts) is

h♣µ, T q :✏ sup
✥
h♣Φ✝µq : Φ : X ÝÑ AZ

d

, Φ ✆ Tm ✏ Sm ✆ Φ ❅m P Z
d
✭
,

where this supremum is allowed to take values in r0,✽s.
However, making this definition is only half the work. In order to use it, one

must find ways in which this supremum can be effectively computed or estimated.

A priori, this could be challenging, because a given p.-p.s. admits a huge variety

of factor maps to different shift systems.

The key fact is that the entropy rate of a shift system — which, a priori, depends

on the product structure of that shift system — is actually invariant under abstract,

ergodic-theoretic isomorphism. This will follow from a slightly stronger result:

monotonicity under factor maps.

Theorem 2. If A and B are finite alphabets, ♣AZ
d

,B♣AZ
dq, µ, Sq is a shift system

and Φ : AZ
d ÝÑ BZ

d

is measurable and shift-equivariant, then

h♣µq ➙ h♣Φ✝µq.
Corollary 3. Isomorphic shift systems have equal entropy rate.

The proof of Theorem 2 will require some more preliminaries about measures

on finite sets of the form AR. The key new ingredient is that we will think of these,

not just as finite sets, but as finite metric spaces.
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1 Metric probability spaces

A metric probability space is a triple ♣X, d, µq consisting of a metric space ♣X, dq
and a probability measure µ P PrX .

First, if ♣X, dq is a metric space, r ➙ 0 and x P X , then we denote the closed

ball of radius r around x by

Br♣xq :✏ ty P X : d♣x, yq ↕ r✉.

More generally, for S ❸ X , we set

Br♣Sq :✏
↕
xPS

Br♣xq.

Next, recall that for r → 0, then the r-covering number cov♣♣X, dq, rq is de-

fined to be

mint⑤S⑤ : Br♣Sq ✏ X✉.
Clearly cov♣♣X, dq, 0q ✏ ⑤X⑤.

In the setting of metric probability spaces, we will need the following modifi-

cation.

Definition 4. If ♣X, d, µq is a metric probability space, ε → 0 and r ➙ 0, then the

ε-almost r-covering number is defined by

covε♣♣X, d, µq, rq :✏ mint⑤S⑤ : µ♣Br♣Sqq → 1✁ ε✉.

If the space ♣X, dq is clear from the context, then this will be abbreviated to

covε♣µ, rq.
Lemma 5. Suppose that F : ♣X, dXq ÝÑ ♣Y, dY q is an L-Lipschitz map between

compact metric spaces, and that µ P Pr X . Then

covε♣♣Y, dY , F✝µq, Lδq ↕ covε♣♣X, dX , µq, δq.

Proof. Since F is L-Lipschitz, for any S ❸ X one has BLδ♣F ♣Sqq ❹ F ♣Bδ♣Sqq.
Therefore, choosing S so that µ♣Bδ♣Sqq → 1✁ ε, we obtain

♣F✝µq♣BLδ♣F ♣Sqqq ➙ ♣F✝µq♣F ♣Bδ♣Sqqq ✏ µ♣F✁1♣F ♣Bδ♣Sqqqq
➙ µ♣Bδ♣Sqq → 1✁ ε,

and, of course, ⑤F ♣Sq⑤ ↕ ⑤S⑤.
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1.1 Hamming metrics

Most of our concern will be with finite metric spaces that arise as follows.

Definition 6. IfA and S are finite sets, then the Hamming metric onAS is defined

by

dH♣♣asqsPS , ♣a✶sqsPSq :✏ ⑤ts P S : as ✘ a✶s✉⑤.
That is, it counts the number of coordinates in which ♣asqs and ♣a✶sqs differ.

The key in this lecture will be to think of the rectangle-marginals of a shift

system ♣AZ
d

,B♣AZ
dq, µ, Sq as giving a family of metric probability spaces

♣AR, dH, µ
Rq,

and studying asymptotic features of the geometry of these spaces as R increases.

The first important tool to this purpose is an estimate for the cardinalities of

balls in ♣AN , dHq. We will see that it amounts to a re-use of some of the estimates

in our initial motivation for Shannon entropy. It is most easily obtained as a special

case of a different theorem: Cramér’s Theorem about Large Deviations in proba-

bility. A more complete probabilistic account can be found, for instance, in [Kal02,

Chapter 27].

Lemma 7. Let X1, X2, . . . , XN be i.i.d. t0, 1✉-valued random variables on some

background probability space ♣Ω,F ,Pq such that P♣Xi ✏ 1q ✏ p. Then

P

✦ N➳
n✏1

Xn ↕ rN
✮
↕ ♣eH♣r,1✁rqpr♣1✁ pq♣1✁rqqN ❅r P r0, ps.

Proof. By Markov’s Inequality, for any s → 0 the probability in question may be

estimated by

P

✦ N➳
n✏1

Xn ↕ rN
✮

✏ P

✦ N➵
n✏1

esXn ↕ esrN
✮

↕ e✁srNE

N➵
n✏1

esXn ✏ ♣Ees♣X1✁rqqN

✏ ♣e✁sr♣pes � 1✁ pqqN ,

using that these r.v.s are i.i.d. for the penultimate equality. This gives a bound

for any choice of s. A little calculus now shows that the optimal choice is s ✏

3



log
r♣1✁pq
p♣1✁rq , and this gives

e✁sr♣pes � 1 ✁ pq ✏ pr♣1 ✁ rqr
rr♣1 ✁ pqr

✁pr♣1 ✁ pq
p♣1 ✁ rq � 1 ✁ p

✠

✏ pr♣1 ✁ pq1✁r
rr♣1 ✁ rq1✁r ✏ eH♣r,1✁rqpr♣1 ✁ pq1✁r,

as required.

Lemma 8. For the balls in the Hamming metric space ♣AN , dHq, one has that

⑤BrN ♣aq⑤ does not depend on a P AN and satisfies

⑤BrN ♣aq⑤ ↕ eH♣r,1✁rqN ⑤A⑤rN ❅r P r0, 1 ✁ 1④⑤A⑤s.
Proof. Fix a P AN , let ν be the uniform probability measure on AN , and on the

probability space ♣AN , νq consider the random variables

Xm♣x1, . . . , xN q :✏ 1txn✘an✉.

Then these are i.i.d. t0, 1✉-valued random variables (for they all depend on inde-

pendent coordinates) with common distribution given by

ν♣tXn ✏ 1✉q ✏ 1 ✁ 1④⑤A⑤.
The relevance of these random variables is that

dH♣a, xq ✏
N➳
n✏1

Xn♣xq,

so now an appeal to Lemma 7 gives

⑤BrN ♣aq⑤
⑤AN ⑤ ✏ ν

✦ N➳
n✏1

Xn ↕ rN
✮
↕
✁
eH♣r,1✁rq ♣1 ✁ 1④⑤A⑤qr

⑤A⑤1✁r
✠N

↕ eH♣r,1✁rqN ⑤A⑤rN
⑤A⑤N ,

as required.

1.2 The Wasserstein metric

Given a compact metric space ♣X, dq, the space PrX is compact in the topology

of vague convergence. This latter topology is also metrizable, but in the sequel it

will be important to work with certain natural metrics that generate it. The most

important for us is defined in terms of couplings. Recall that if µ, ν P PrX , then

a ♣µ, νq-coupling is some λ P PrX2 whose first and second marginals are µ and

ν respectively. We now write Cpl♣µ, νq for the set of these. The product measure

µ❜ ν is always an example.
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Definition 9 (Wasserstein metric). If λ P Cpl♣µ, νq, then its d-cost is the integral

➺
X2

d♣x, yqλ♣dx,dyq,

and the resulting Wasserstein metric on PrX is defined by

Wd
1♣µ, νq :✏ inf

λPCpl♣µ,νq

➺
X2

d♣x, yqλ♣dx,dyq.

In case d is a Hamming metric, we abbreviate W
dH
1 ✏: WH

1

The subscript in ‘W1’ refers to its location in a family of metrics Wp, p P
r1,✽s, but we will not use the other members of this family.

Lemma 10. The quantity Wd
1 defines a metric on PrX , and convergence in W1

implies convergence in the vague topology on PrX .

Proof. First observe that, since d : X2 ÝÑ r0,✽q is continuous, the d-cost is

a continuous functional on Cpl♣µ, νq for the vague topology. On the other hand,

Cpl♣µ, νq is a vaguely closed subset of the compact set PrX2, so the d-weight

must attain its infimum over Cpl♣µ, νq.
Clearly W1♣µ, νq ➙ 0. If W1♣µ, νq ✏ 0, then, by the above, there is some

λ P Cpld♣µ, νq such that
➩
X2 d dλ ✏ 0. This implies that

λtd ✏ 0✉ ✏ λt♣x, xq : x P X✉ ✏ 1,

and hence

µ♣Aq ✏ λ♣A✂Xq ✏ λ♣♣A✂Xq ❳ t♣x, xq : x P X✉q
✏ λ♣♣X ✂Aq ❳ t♣x, xq : x P X✉q ✏ λ♣X ✂Aq ✏ ν♣Aq

for any Borel A ❸ X , so µ ✏ ν.

The symmetry of W1 is obvious. Next, suppose that λ1 P Cpl♣µ, νq and λ2 P
Cpl♣ν, θq. Consider disintegrations of these over the second and first coordinates,

respectively:

λ1 ✏
➺
X

λ1,y ❜ δy ν♣dyq and λ2 ✏
➺
X

δy ❜ λ2,y ν♣dyq.

Now define λ P PrX2 by

λ ✏
➺
X

λ1,y ❜ λ2,y ν♣dyq.
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On the one hand, this is an element of Cpl♣µ, θq: for instance, for the first marginal

one has

λ♣A✂Xq ✏
➺
X

♣λ1,y ❜ λ2,yq♣A✂Xq ν♣dyq

✏
➺
X

λ1,y♣Aq ν♣dyq ✏ λ1♣A✂Xq ✏ µ♣Aq.

On the other hand, this λ satisfies➺
d dλ ✏

➺
X

➺
X2

d♣x, zqλ1,y♣dxq ❜ λ2,y♣dzq ν♣dyq

↕
➺
X

➺
X2

♣d♣x, yq � d♣y, zqqλ1,y♣dxq ❜ λ2,y♣dzq ν♣dyq

✏
➺
X

➺
X

d♣x, yqλ1,y♣dxq ν♣dyq �
➺
X

➺
X

d♣y, zqλ2,y♣dzq ν♣dyq

✏
➺
d dλ1 �

➺
d dλ2.

Taking infima over λ1 and λ2 gives

W1♣µ, θq ↕ W1♣µ, νq �W1♣ν, θq.

Finally, given f1, . . . , fk P C♣Xq, let M :✏ maxi↕k ⑥fi⑥✽. This max is finite,

because X is compact, and for the same reason the functions fi are uniformly

continuous. Therefore, given also ε → 0, there is some δ → 0 such that

d♣x, yq ➔ δ ùñ ⑤fi♣x, q ✁ fi♣yq⑤ ➔ ε ❅i ↕ k.

Having chosen this δ, suppose that µ, ν P PrX and that
➩
d dλ ➔ εδ for some

λ P Cpl♣µ, νq. Then for any i ↕ k one has

✞✞✞
➺
fi dµ✁

➺
fi dν

✞✞✞ ✏
✞✞✞
➺
♣fi♣xq✁fi♣yqqλ♣dx,dyq

✞✞✞ ↕
➺
⑤fi♣xq✁fi♣yq⑤λ♣dx,dyq

↕ ε ☎ λtd ➔ δ✉ � 2Mλtd ➙ δ✉ ↕ ε� 2Mδ✁1

➺
d dλ ↕ ♣1� 2Mqε,

where the penultimate bound follows from Markov’s Inequality. Since ε → 0 was

arbitrary, this shows that the topology generated by W1 is at least as fine as the

vague topology.

Remark. In fact, a little more work shows that W1 precisely generates the vague

topology, but we will not need that here. ⊳
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Lemma 11. If r :✏ W1♣µ, νq, then for any Borel A ❸ X one has

ν♣Bδ♣Aqq ➙ µ♣Aq ✁ r④δ ❅δ → 0.

Proof. Choose λ P Cpl♣µ, νq minimizing
➩
d dλ. Let B :✏ X③Bδ♣Aq. Then

A✂B ❸ td → δ✉, and so

δλ♣A✂Bq ✏
➺
δ1A✂B dλ ↕

➺
d dλ ✏ r.

On the other hand,

λ♣A✂Bq ✏ λ♣A✂Xq ✁ λ♣A✂Bδ♣Aqq ➙ µ♣Aq ✁ ν♣Bδ♣Aqq.
Combining these inequalities completes the proof.

Corollary 12. If r :✏ W1♣µ, νq, then

covε�r④δ♣µ, δ � δ✶q ↕ covε♣ν, δ✶q ❅ε, δ, δ✶ → 0.

Proof. Observe that for any S ❸ X one has Bδ�δ✶♣Sq ❹ Bδ♣Bδ✶♣Sqq. Therefore,

if S ❸ X is such that ν♣Bδ✶♣Sqq → 1✁ ε, then the preceding lemma gives

µ♣Bδ�δ✶♣Sqq ➙ µ♣Bδ♣Bδ✶♣Sqqq ➙ ν♣Bδ✶♣Sqq ✁ r④δ → 1✁ ♣ε� r④δq.

1.3 The d-metric

In the setting of a shift action S : Z
d
ñ AZ

d

, one can formulate a metric on

PrS AZ
d

analogous to the Wasserstein metric on PrAN , normalized by N . In-

tuitively, we should like to mimic the infimum defining the Wasserstein metric,

but with an integrand that captures the ‘fraction of coordinates’ where two con-

figurations in AZ
d

differ. This ‘fraction’ does not always make sense, but we can

get around this in view of the fact that we work exclusively with shift-invariant

measures.

Definition 13. The metric d on PrS AZ
d

is defined by

d♣µ, νq :✏ inf
✥
λ♣t♣a, a✶q : a0 ✘ a✶0✉q : λ P J♣µ, νq✭,

where J♣µ, νq ❸ Pr♣AZ
d ✂AZ

dq is the set of all joinings of µ and ν.

The connection with Wasserstein metrics is made more formal by the following

observation:

7



Lemma 14. For any λ P J♣µ, νq and any R ❸ Z
d, one has➺

AZd✂AZd

dH♣a⑤R, a✶⑤Rqλ♣da,da✶q ✏ ⑤R⑤λta0 ✘ a✶0✉.

If λ is ergodic for the shift-action on ♣A✂AqZd

, then one also has

λta0 ✘ a✶0✉ ✏ lim
LÝÑ✽

L✁ddH♣a⑤rLsd , a✶⑤rLsdq for λ-a.e. ♣a, a✶q.

Proof. The first equality follows because➺
dH♣a⑤R, a✶⑤Rqλ♣da,da✶q ✏

➳
mPR

➺
1t♣Smaq0✘♣Sma✶q0✉ λ♣da,da✶q,

and all of the integrands on the right are equal to λta0 ✘ a✶0✉ by the shift-invariance

of λ. In case λ is ergodic, the second equality now follows from the same formula

and the Pointwise Ergodic Theorem.

Note, however, that d does not itself arise in the same way as a Wasserstein

metric, because a priori the limit

lim
LÝÑ✽

L✁ddH♣a⑤R, a✶⑤Rq

does not make sense for all pairs ♣a, a✶q.
Also, since the functional λ ÞÑ λta0 ✘ a✶0✉ is continuous for the vague topol-

ogy on PrAZ
d

, one also has that the infimum in Definition 13 is always attained at

some λ.

2 Isomorphism-invariance of the entropy rate

The first step towards Theorem 2 is to obtain another expression for the entropy

rate of an ergodic shift-invariant meausre, giving is some more ‘robustness’.

Proposition 15. If ν P PrAZ
d

is ergodic and shift-invariant, then for every ε, δ P
♣0, 1q and η → 0 one has

covε
�♣AR, dH, ν

Rq, δ⑤R⑤✟ ➙ e♣h♣νq✁H♣δ,1✁δq✁δ log ⑤A⑤✁ηq⑤R⑤ (1)

for all sufficiently large rectangles R. Consequently, for any ε P ♣0, 1q one has

h♣νq ✏ sup
δ→0

lim inf
RÒ

1

⑤R⑤ log covε
�♣AN , dH, ν

Rq, δ⑤R⑤✟,
where the lim inf is taken as all side lengths of R tends to ✽.
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Proof. If R is sufficiently large and S ❸ AR satisfies νR♣Bδ⑤R⑤♣Sqq → 1✁ ε, then

the support-counting corollary of the Shannon-McMillan Theorem (Corollary 20

of Notes 9) gives

⑤Bδ⑤R⑤♣Sq⑤ ➙ 2e♣h✁ηq⑤R⑤.

On the other hand,

⑤Bδ⑤R⑤♣Sq⑤ ↕
➳
xPS

⑤Bδ⑤R⑤♣xq⑤ ↕ ⑤S⑤e♣H♣δ,1✁δq�δ log ⑤A⑤q⑤R⑤,

by Lemma 8. Combining these inequalities gives

⑤S⑤ ➙ 2e♣h✁η✁♣H♣δ,1✁δq�δ log ⑤A⑤qq⑤R⑤.

The second conclusion follows by letting η ÝÑ 0 and δ ÝÑ 0, since then also

H♣δ, 1✁ δq � δ log ⑤A⑤ ÝÑ 0.

The importance of this proposition is that the covering numbers in question

for δ → 0 behave more ‘smoothly’ under factor maps than the actual count of

the minimal number of configurations needed to support most of νR. The kind of

robustness we gain is that two different, but small, values of δ will both asymptot-

ically give good approximations to h♣νq. This will be used in conjunction with the

following.

Lemma 16. Let ♣AZ
d

,B♣AZ
dq, µ, Sq be a shift system and Φ : AZ

d ÝÑ BZ
d

a

shift-equivariant map. Then for every δ → 0 there are L,N ➙ 1 such that for any

rectangle R with all sides longer than N , there is an L-Lipschitz map

Ψ : AR ÝÑ BR

such that ➺
dH

�
Φ♣aq⑤R,Ψ♣a⑤Rq

✟
µ♣daq ➔ δ⑤R⑤.

Therefore

WH
1 ♣νR,Ψ✝µRq ➔ δ⑤R⑤.

Proof. Since ϕ0 : AZ
d ÝÑ B is measurable, it may be approximated in measure

by a map depending on only finite many coordinates: that is, there are K ➙ 1 and

a map ψ : Ar✁K;Ksd ÝÑ B such that

µ♣ta : ϕ0♣aq ✘ ψ♣a⑤r✁K;Ksdq✉q ➔ δ. (2)

Now suppose that R is a rectangle with all sides longer than some N P Z, and

partition it as R1 ❨D, where

R1 :✏ tm P R : m� r✁K;Ksd ❸ R✉.

9



Easy estimates give ⑤D⑤ ↕ 2dK⑤R⑤④N , so for fixed K this is O♣⑤R⑤④Nq. Pick

arbitrarily some letters bm P B for m P D, and now define a map Ψ : AR ÝÑ BR

as follows:

Ψ♣aq :✏ ♣ψm♣aqqaPR :✏
✧
ψ♣a⑤m�r✁K;Ksdq if m P R1

bm if m P D.

Let L :✏ ♣2K � 1qd.

Each output coordinate ψm♣aq depends on at most ♣2K � 1qd ✏ L input co-

ordinate (if m P D, then it does not depend on a at all), This implies that if a and

a✶ differ in at most d coordinates, then their Ψ-images can differ in at most Ld

coordinates: that is, that Ψ is L-Lipschitz.

On the other hand, one has➺
dH

�
Φ♣aq⑤R,Ψ♣a⑤Rq

✟
µ♣daq ✏

➺ ➳
mPR

1tϕm♣aq✘ψm♣a⑤Rq✉ µ♣daq

✏ ⑤D⑤ �
➳
mPR1

µ♣ta : ϕm♣aq ✘ ψm♣a⑤Rq✉q

✏ ⑤D⑤ �
➳
mPR1

µ♣ta : ϕ0♣Tmaq ✘ ψ♣Tma⑤r✁K;Ksdq✉q

✏ ⑤D⑤ � ⑤R1⑤µ♣ta : ϕ0♣aq ✘ ψ♣a⑤r✁K;Ksdq✉q.
By (2) and the fact that ⑤D⑤ ✏ O♣⑤R⑤④Nq, this will still be ➔ δ⑤R⑤ provided we

chose N large enough.

The last conclusion follows because the measure

λ :✏
➺
δ♣Φ♣aq⑤R,Ψ♣a⑤Rqq µ♣daq

is a coupling of νR (since Φ✝µ ✏ ν) and Ψ✝µR, so

WH
1 ♣νR,Ψ✝µRq ↕

➺
dH♣b, cqλ♣db,dcq ✏

➺
dH

�
Φ♣aq⑤R,Ψ♣a⑤Rq

✟
µ♣daq.

Proof of Theorem 2. Step 1. In case µ is ergodic, by Proposition 15, it suffices to

prove the following:

For every δ, ε → 0 there are some δ✶, ε✶ → 0 such that

covε♣νR, δ⑤R⑤q ↕ covε✶♣µR, δ✶⑤R⑤q
for all sufficiently large R.

10



Choose r → 0 so small that ε ✁ r④δ → 0. The preceding lemma gives L → 0

and, for all sufficiently large R, an L-Lipschitz map Ψ : AR ÝÑ BR such that

WH
1 ♣νR,Ψ✝µRq ➔ r⑤R⑤. By Corollary 12 and then Lemma 5, we obtain

covε♣νR, δ⑤R⑤q ↕ covε✁r④δ♣Ψ✝µR, δ⑤R⑤④2q ↕ covε✁r④δ♣µR, δ⑤R⑤④2Lq.

Letting δ✶ :✏ δ④L and ε✶ :✏ ε✁ r④δ, this completes the proof.

Step 2. If µ is not ergodic, let µ ✏ ➩
Y
µy θ♣dyq be an ergodic decomposition

of it. Then applying Φ✝ gives Φ✝µ ✏ ➩
Y

Φ✝µy θ♣dyq, and each image measure

Φ✝µy is still ergodic. Therefore, applying Step 1 to the measures µy and recalling

the affinity of h (Proposition 21 in Notes 9), we obtain

h♣µq ✏
➺
Y

h♣µyq θ♣dyq ➙
➺
Y

h♣Φ✝µyq θ♣dyq ✏ h♣Φ✝µq.

The importance of Theorem 2 for the KS entropy is the following.

Corollary 17. Ifϕ : X ÝÑ A is a generating observable for a p.-p.s. ♣X,Σ, µ, T q,
and Φ : X ÝÑ AZ

d

is the resulting factor map, then

h♣µ, T q ✏ h♣Φ✝µq.

Proof. The inequality h♣µ, T q ➙ h♣Φ✝µq is immediate. In the reverse direction,

suppose that Ψ ✏ ♣ψmqm : X ÝÑ BZ
d

is any other factor map. Since ϕ is

generating, we have

Φ✁1♣B♣AZ
dqq ✏ σ-alg♣♣ϕmqmPZdq ✏ Σ ➙ Ψ✁1♣B♣BZ

dqq mod µ.

In particular, the level-set partition ♣ψ✁1
0 tb✉qbPB is measurable with respect to

Φ✁1♣B♣AZ
dqq up to µ-negligible sets. We may adjust ψ0 on a µ-negligible set

without changing Ψ✝µ, and so we may actually assume that ψ0 is measurable with

respect to Φ✁1♣B♣AZ
dqq, and therefore ψ0 ✏ ξ0 ✆ Φ for some ξ0 : AZ

d ÝÑ B.

Letting

Ξ :✏ ♣ξ0 ✆ TmqmPZd : AZ
d ÝÑ BZ

d

,

this has now created a commutative diagram of factor maps

X

Φ

}}{{
{{

{{
{{ Ψ

!!
DD

DD
DD

DD

AZ
d

Ξ
//
BZ

d

.
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Therefore Theorem 2 gives

h♣Ψ✝µq ✏ h♣Ξ✝Φ✝µq ↕ h♣Φ✝µq,
completing the proof.

This corollary is a version for Z
d-systems of the ‘Kolmogorov-Sinai Theorem’.

It has the following reassuring further corollary.

Corollary 18. For any shift system ♣AZ
d

,B♣AZ
dq, ν, Sq, its abstract KS entropy is

the same as its entropy rate.

3 First examples and applications

3.1 Bernoulli shifts

It is high time we completed our initially-promised application of entropy: distin-

guishing Bernoulli shifts.

Lemma 19. For a Bernoulli shift ♣AZ
d

,B♣AZ
dq,p❜Z

d

, Sq over some finite proba-

bility space ♣A,pq, the KS entropy is H♣pq.
Proof. By Corollary 17, it suffices to check one generating observable. One such

is given by π0 : ♣amqm ÞÑ a0, since ♣π0 ✆ Smqm ✏ id
AZd , and for this observable

the marginal distribution on a rectangle R is just p❜R, so the entropy rate is

lim
R
⑤R⑤✁1H♣p❜Rq ✏ lim

R
⑤R⑤✁1 ☎ ⑤R⑤ ☎H♣pq ✏ H♣pq.

Corollary 20. If ♣AZ
d

,B♣AZ
dq,p❜Z

d

, Sq ✕ ♣BZ
d

,B♣BZ
dq,q❜Z

d

, Sq for some

finite probability spaces ♣A,pq and ♣B,qq, then H♣pq ✏ H♣qq.
The reverse of this implication is Ornstein’s Theorem, which will be discussed

more later in the course.

3.2 Torus rotations

Recall that a Z
d-action by torus rotations is a system of the form ♣TD,B♣TDq,m,Rq,

where m is the Haar measure on T
D and R is given by

R♣m1,...,mdq♣tq :✏ t�m1α1 � ☎ ☎ ☎ �mdαd

for some fixed elements α1, . . . , αd P T
D. We have already seen that these systems

are not weak mixing. Insofar as ‘positive entropy’ is an indicator of ‘very random’,

the following comes as no surprise.
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Proposition 21. All ergodic torus rotations have KS entropy equal to zero.

This extends to general, possibly non-ergodic isometric systems with a little

extra work, but we omit the details.

Proof. Let 0 P T
D be the point ♣0, 0, . . . , 0q, and consider T

d endowed with the

metric ⑤ ☎ ⑤ arising from the Euclidean metric on R
D.

Step 1. The key fact for this proof is the following:

For any δ P ♣0, 1④2q, the observable

1Bδ♣0q : T
D ÝÑ t0, 1✉

is generating.

To see this, suppose that s, t P T
d are distinct. Because R is assumed ergodic,

the subgroup Zα1 � ☎ ☎ ☎ � Zαd must be dense in T
D. Since s and t are distinct,

it follows that there is some m P Z
d such that r :✏ m1α1 � ☎ ☎ ☎ �mdαd has the

following property:

Rms ✏ s� r P intBδ♣0q and Rmt ✏ t� r P T
D③Bδ♣0q,

and hence

1Bδ♣0q♣Rmsq ✏ 1 ✘ 0 ✏ 1Bδ♣0q♣Rmtq.
Moreover, there is a fixed boundM♣δ, ⑤s✁t⑤q (which may blow up as either δ ÝÑ 0

or ⑤s✁ t⑤ ÝÑ 0) such that this m may be found in rM sd. This implies that, for any

δ → 0 and r → 0 there is an M P N such that the map

T
D ÝÑ t0, 1✉rMsd : s ÞÑ ♣1Bδ♣0q♣RmsqqmPrMsd

distinguishes any two points that are distance at least r apart: that is, the level-sets

of this map all have diameter less than r. Letting M ÝÑ ✽, it follows that any

open subset of T
d may be approximated in measure by unions of level-sets of these

maps, and hence, overall, 1Bδ♣0q is a generating obserable.

Step 2. The result of Step 1 shows that

h♣m,Rq ✏ h♣Φδ✝mq ❅δ → 0.

On the other hand, the subadditivity of entropy gives

h♣Φδ✝mq ↕ H♣m♣Bδ♣0qq, 1✁m♣Bδ♣0qqq
✏ ✁m♣Bδ♣0qq logm♣Bδ♣0qq ✁ ♣1✁m♣Bδ♣0qqq log♣1✁m♣Bδ♣0qqq.

As δ ÝÑ 0 we have m♣Bδ♣0qq ÝÑ 0, and then this last bound also tends to

✁0 log 0✁ 1 log 1 ✏ 0, so h♣m,Rq must be zero.
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4 Some properties of KS entropy

4.1 Continuity under d

We next give a continuity result for the entropy rate, and then for the KS entropy.

The appropriate notion of approximation for shift-invariant measures is given by

the d-metric.

Lemma 22. Fix a finite alphabet A. Then for every ε → 0 there is a δ → 0,

depending on ε and ⑤A⑤, such that

for µ, ν P PrSAZ
d

, d♣µ, νq ➔ δ ùñ ⑤h♣µq ✁ h♣νq⑤ ➔ ε.

Proof. Step 1. First assume that µ and ν are ergodic, and let λ P J♣µ, νq be a

joining for which λta0 ✘ a✶0✉ ✏ d♣µ, νq. Choose δ ➔ ε2. Then for any R ❸ Z
d

one has λR P Cpl♣µR, νRq and➺
dH♣a, a✶qλR♣da,da✶q ✏ ⑤R⑤λta0 ✘ a✶0✉ ➔ δ⑤R⑤,

so WH
1 ♣µR, νRq ➔ δ. For any η → 0, applying inequality (1) and Corollary 12 as

in the proof of Theorem 2 gives

h♣µq ✁ η ↕ 1

⑤R⑤ log covε♣µR,
❄
δ⑤R⑤q �H♣

❄
δ, 1✁

❄
δq �

❄
δ log ⑤A⑤

↕ 1

⑤R⑤ log covε✁❄δ♣νR,
❄
δ⑤R⑤④2q �H♣

❄
δ, 1✁

❄
δq �

❄
δ log ⑤A⑤

↕ 1

⑤R⑤ log covε✁❄δ♣νR, 0q �H♣
❄
δ, 1✁

❄
δq �

❄
δ log ⑤A⑤,

provided all sides of R are long enough. As the minimum side-length of R in-

creases to ✽, Proposition 15 turns this into

h♣µq ↕ h♣νq �H♣
❄
δ, 1✁

❄
δq �

❄
δ log ⑤A⑤,

where the error term on the right tends to 0 as δ ÝÑ 0.

Step 2. Now consider general µ and ν. Let δ be chosen as in the ergodic case,

and now assume that λ P J♣µ, νq with λta0 ✘ a✶0✉ ↕ δ2. Let λ ✏ ➩
Y
λy θ♣dyq

be an ergodic decomposition of λ, let πi : AZ
d ✂ AZ

d ÝÑ AZ
d

for i ✏ 1, 2 be

the first and second coordinate projections, respectively, and let µy :✏ π1✝λy and

νy :✏ π2✝λy. Both µy and νy are ergodic, as images of the ergodic measure λy.

On the one hand,

δ2 → λta0 ✘ a✶0✉ ✏
➺
Y

λyta0 ✘ a✶0✉ θ♣dyq.
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Therefore, letting U :✏ ty P Y : λyta0 ✘ a✶0✉ ➔ δ✉, Markov’s Inequality gives

θ♣Uq ➙ 1✁ δ.

On the other hand, the affinity of the entropy rate gives

⑤h♣µq ✁ h♣νq⑤ ✏
✞✞✞
➺
Y

h♣µyq ✁ h♣νyq θ♣dyq
✞✞✞ ↕

➺
Y

⑤h♣µyq ✁ h♣νyq⑤ θ♣dyq

↕
➺
U

⑤h♣µyq✁h♣νyq⑤ θ♣dyq�
➺
Y ③U

⑤h♣µyq✁h♣νyq⑤ θ♣dyq ➔ ε♣1✁δq�δ log ⑤A⑤,

because all h♣µyq and h♣νyqmust lie in r0, log ⑤A⑤s. Since we may choose δ smaller

if necessary, this completes the proof.

Definition 23. Let ϕ : X ÝÑ A and ψ : X ÝÑ B be finite-valued observables

on a probability space ♣X,µq, and let δ → 0. Then ϕ is δ-almost ψ-measurable if

there is a map ξ : B ÝÑ A such that

µtϕ ✘ ξ ✆ ψ✉ ➔ δ.

It is ψ-measurable if this holds with δ ✏ 0.

Corollary 24. Let ε → 0 and A and B be finite alphabets. Then there is a δ → 0,

depending on ε and ⑤A⑤ but not ⑤B⑤, for which the following holds. Suppose that

ϕ : X ÝÑ A and ψ : X ÝÑ B are finite-valued observables on a p.-p. system

♣X,Σ, µ, T q such that ϕ is δ-almost ψ-measurable. Let Φ : X ÝÑ AZ
d

and

Ψ : X ÝÑ BZ
d

be the corresponding equivariant maps. Then

h♣Ψ✝µq ➙ h♣Φ✝µq ✁ ε.

Proof. Let δ depend on ε and ⑤A⑤ as in Lemma 22, let ξ be as in Definition 23, and

let Ξ : AZ
d ÝÑ BZ

d

be the factor map resulting from ξ. Then d♣Φ✝µ,Ξ✝Ψ✝νq ➔
δ, so Lemma 22 gives

h♣Ψ✝µq ➙ h♣Ξ✝Ψ✝µq ➙ h♣Φ✝µq ✁ ε.

Corollary 25. Suppose that P1 ↕ P2 ↕ . . . is an increasing sequence of finite

measurable partitions of ♣X,Σq which together generate Σ up to µ-negligible sets.

For each i, let ψi : X ÝÑ r⑤Pi⑤s be an observable whose level-sets are Pi. Then

h♣µ, T q ✏ lim
iÝÑ✽

h♣Φi✝µq,

where Φi : X ÝÑ r⑤Pi⑤sZd

is the equivariant map resulting from ϕi, and this limit

is non-decreasing.
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4.2 Entropy and joinings

Lemma 26. If ♣X,Σ, µ, T q and ♣Y,Φ, ν, Sq are p.-p.s.s and λ P J♣µ, νq, then

h♣λ, T ✂ Sq ↕ h♣µ, T q � h♣ν, Sq.
This is an equality in case λ ✏ µ❜ ν.

Proof. Let P1 ↕ P2 ↕ ☎ ☎ ☎ ↕ Σ and Q1 ↕ Q2 ↕ ☎ ☎ ☎ ↕ Φ be finite measurable

partitions of X and Y generating Σ and Φ up to negligible sets, respectively. Let

ϕi : X ÝÑ r⑤Pi⑤s and ψi : Y ÝÑ r⑤Qi⑤s be observables generating Pi and Qi,

and let Φi and Ψi be the resulting equivariant maps. Then Pi ❜ Qi is a sequence

of measurable partitions of X ✂ Y generating Σ ❜ Φ up to λ-negligible sets, and

each Pi ❜ Qi is generated by the finite-valued observable Φi ✂ Ψi : X ✂ Y ÝÑ
r⑤Pi⑤s ✂ r⑤Qi⑤s. Therefore Corollary 25 gives

h♣λ, T ✂ Sq ✏ lim
iÝÑ✽

h♣♣Φi ✂Ψiq✝λq ✏ lim
iÝÑ✽

lim
LÝÑ✽

L✁dH♣♣♣Φi ✂Ψiq✝λqrLsdq

↕ lim
iÝÑ✽

lim
LÝÑ✽

�
L✁dH♣♣Φi✝µqrLsdq � L✁dH♣♣Ψi✝νqrLsdq

✟
✏ h♣µ, T q � h♣ν, Sq.

The inequality here results from the subadditivity of Shannon entropy. In case

λ ✏ µ❜ ν, this step becomes the equality

H♣♣♣Φi ✂Ψiq✝λqrLsdq ✏ H♣♣Φi✝µqrLsdq �H♣♣Ψi✝νqrLsdq,
leading to h♣µ❜ ν, T ✂ Sq ✏ h♣µ, T q � h♣ν, Sq.

This is an obvious analog of Lemma 6 in Notes 9 for Shannon entropy. Note,

however, the ‘coercivity’ part of that lemma can fail here: for instance, if ♣X,Σ, µ, T q
is any non-trivial system with entropy zero, then any joining of two copies of this

system has entropy ↕ 2h♣µ, T q ✏ 0, but there are such examples which admit

many different self-joinings (for instance, among the torus rotations).

4.3 Entropy and ergodic decomposition

We can also generalize the affinity of the entropy rate function to KS entropy. Now

suppose that ♣X,Σ, µ, T q is a compact model of a p.-p. system, let Φ ↕ Σ be its

factor of invariant sets, and let π : X ÝÑ Y be a factor map to another compact

metric space which generates Φ up to µ-negligible sets. In this case, because the

underlying spaces are compact, one may disintegrate µ over the factor map π to

obtain an ergodic decomposition

µ ✏
➺
Y

µy ν♣dyq, where ν :✏ π✝µ.
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Proposition 27 (Integral formula for KS entropy). In the setting above, one has

h♣µ, T q ✏
➺
Y

h♣µy, T q ν♣dyq.

Proof. This requires a preliminary consideration of Σ. Since Σ is the Borel σ-

algebra ofX , it is countably generated, for example by the collection of all rational-

radius balls centred at the points of a countable dense subset of X . We may there-

fore choose an increasingly fine sequence P1 ↕ P2 ↕ ☎ ☎ ☎ of finite Borel partitions

of X which together generate Σ. For each i, we may now also choose a finite-

valued observable ϕi : X ÝÑ t1, 2, . . . , ⑤Pi⑤✉ whose level sets are precisely the

cells of Pi. Because the Pi are increasing and together generate Σ, for any Borel

probability measure on X , any Borel set may be approximated in measure by Pi-

measurable sets as i ÝÑ ✽. Given a finite-value observable ψ on X and δ → 0,

we may apply this fact to the level-sets of ψ to conclude that ψ is is δ-almost ϕi-

measurable for all sufficiently large i. Also, since Pi ↕ Pi�1, the observable ϕi is

measurable with respect to ϕi�1 for each i.

Therefore, Corollary 25 may be applied to both µ and all of the µys, giving

h♣µ, T q ✏ lim
iÝÑ✽

h♣Φi✝µq ✏ lim
iÝÑ✽

h
✁ ➺

Y

Φi✝µy ν♣dyq
✠

✏ lim
iÝÑ✽

➺
Y

h♣Φi✝µyq ν♣dyq,

by the affinity of the entropy rate for a fixed space of shift-invariant measures.

However, we also have that the map y ÞÑ h♣Φi✝µyq is non-decreasing in i, be-

cause each Φi✝µy is an image of Φ♣i�1q✝µy. Therefore the Monotone Convergence

Theorem and another appeal to Corollary 25 give

lim
iÝÑ✽

➺
Y

h♣Φi✝µyq ν♣dyq ✏
➺
Y

lim
iÝÑ✽

h♣Φi✝µyq ν♣dyq ✏
➺
Y

h♣µy, T q ν♣dyq.
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Ergodic Theory

Notes 11: Entropy, couplings and joinings

Having defined the abstract Kolmogorov-Sinai entropy and established its ba-

sic properties, we will now begin to study some more delicate ergodic-theoretic

features of shift systems. Our main goal is the following theorem of Sinai.

Theorem 1 (Sinai’s Theorem). If ♣X, Σ, µ, T q is a p.-p. Z
d-system of entropy h,

and ♣AZ
d

,B♣AZ
dq,p❜Z

d

, Sq is a Bernoulli shift with H♣pq ↕ h, then there is a

factor map

♣X, Σ, µ, T q ÝÑ ♣AZ
d

,B♣AZ
dq,p❜Z

d

, Sq.
The constraint H♣pq ↕ h is clearly necessary, because H♣pq equals the KS

entropy of the Bernoulli shift, and KS entropy is monotone under factor maps.

Choosing some p for which H♣pq ✏ h, this result asserts, in a sense, that all of the

KS entropy in an abstract system can be accounted by a Bernoulli-system factor of

it (although not at all uniquely).

We will assume h ➔ ✽ in our treatment of Sinai’s Theorem, but this assump-

tion can be removed with some extra technicalities.

Sinai’s Theorem immediately implies the following.

Corollary 2 (Weak Ornstein Theorem). If ♣A,pq and ♣B,qq are finite probability

spaces with H♣pq ✏ H♣qq, then each of

♣AZ
d

,B♣AZ
dq,p❜Z

d

, Sq

and

♣BZ
d

,B♣BZ
dq,q❜Z

d

, Sq
admits a factor map onto the other.

The full Ornstein Theorem gives that these two Bernoulli shifts are actually

isomorphic. Its proof is a significant enhancement of the proof of Sinai’s Theorem,

and will not be covered in this course.
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1 Entropy-transport inequalities

One of the phenomena lying behind Sinai’s Theorem is the ability to construct W1-

small couplings between a product measure and another measure which resembles

it in some weaker sense. The following is an example of an ‘entropy-transport’

inequality (where ‘transport’ refers to the Wasserstein metric).

Theorem 3. Given a finite probability space ♣A,pq and ε → 0, there is δ → 0 for

which the following holds: If N ➙ 1, and µ P PrAN satisfies

• (entropy approximation) H♣µq ➙ N♣H♣pq ✁ δq, and

• (marginal approximation)

N➳
n✏1

⑥πn✝µ✁ p⑥TV ➔ δN,

where πn : AN ÝÑ A is the N th coordinate projection, then

WH
1 ♣µ,p❜N q ➔ εN.

Thus, if an unknown probability measure µ on AN has roughly the same en-

tropy and, on average, roughly the same marginals as p❜N , this µ must be close to

p❜N in the Wasserstein metric.

There are many ways to prove Theorem 3. We will prove it via the following

more precise result, which in turn uses an adaptation of an argument of Marton.

Theorem 4. Given a finite alphabet A, there is a C ➔ ✽, depending only on ⑤A⑤,
for which the following holds: If N ➙ 1, and µ P PrAN has one-dimensional

marginals θ1, . . . , θN , then

W1

✁
µ,
â
n↕N

θn

✠
↕ C

❞
N
✁ ➳

n↕N

H♣θnq ✁H♣µq
✠
.

Observe that, by the strong subadditivity of H (Lemma 6 of Notes 9) and in-

duction on N , one always has

H♣µq ↕
➳

n↕N

H♣θnq,

with equality if and only if µ ✏ ➶n↕N θn. Theorem 4 makes this quantitative in

terms of the Wasserstein metric.

We begin with a sequence of elementary lemmas; then show how these com-

bine to give Theorem 4; and then use Theorem 4 to deduce the slightly more flexi-

ble Theorem 3.
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Lemma 5. For any compact metric space ♣X, dq and µ, ν P PrX , one has

W1♣µ, νq ↕ ⑥µ✁ ν⑥TV ☎ diam♣X, dq.

Proof. Let α :✏ ⑥µ ✁ ν⑥TV, and recall that α ✏ 1 ✁ ♣µ ❫ νq♣Xq, where µ ❫ ν

is the unique largest Borel measure on X that is less than or equal to both µ and

ν. If α ✏ 0, then µ ✏ ν so we may use the diagonal coupling. If α → 0, define

λ P PrX2 by

λ ✏
➺

X

δ♣x,xq ♣µ❫ νq♣dxq � 1

α
♣µ✁ µ❫ νq ❜ ♣ν ✁ µ❫ νq.

Then

λ♣A✂Xq ✏ ♣µ❫νq♣tx : ♣x, xq P A✂X✉q� 1

α
♣µ✁µ❫νq♣Aq☎♣ν✁µ❫νq♣Xq

✏ ♣µ❫ νq♣Aq � ♣µ✁ µ❫ νq♣Aq ✏ µ♣Aq,

using that ♣ν ✁µ❫ νq♣Xq ✏ 1✁♣µ❫ νq♣Xq ✏ α. Similarly, λ♣X ✂Bq ✏ ν♣Bq,
and finally, one has

➺
X2

d dλ ✏
➺

X

d♣x, xq ♣µ❫νq♣dxq� 1

α

➺
X2

d♣x, yq ♣µ✁µ❫νq♣dxq☎♣ν✁µ❫νq♣dyq

↕ 1

α
☎ diam♣X, dq ☎ ♣µ✁ µ❫ νq♣Xq ☎ ♣ν ✁ µ❫ νq♣Xq ↕ α ☎ diam♣X, dq.

Lemma 6. Let ♣X, dXq and ♣Y, dY q be compact metric spaces, and endow X✂Y

with the metric

d♣♣x, yq, ♣x✶, y✶qq :✏ dX♣x, x✶q � dY ♣y, y✶q.

Let θ P PrX , suppose that µ1, µ2 P Pr♣X ✂ Y q both have first marginal equal to

θ, and let

µi ✏
➺

X

δx ❜ νi,x θ♣dxq

for i ✏ 1, 2 be the disintegrations over the first coordinate. Then

Wd
1♣µ1, µ2q ↕

➺
X

W
dY

1 ♣ν1,x, ν2,xq θ♣dxq.

3



Proof. Let λx P PrY 2 be a ♣ν1,x, ν2,xq-coupling realizing W
dY

1 ♣ν1,x, ν2,xq for

each x. (Technically, one should make sure that λx can be chosen measurably in

x, but we will apply this lemma only in the case of finite sets X and Y , so ignore

this point.) Now define λ P Pr♣♣X ✂ Y q2q by

λ♣dx1,dy1,dx2,dy2q :✏
➺

X

δ♣x,xq♣dx1,dx2q ❜ λx♣dy1, dy2q θ♣dxq.

The marginal of this on the first copy of X ✂ Y is➺
X

δx ❜ ν1,x θ♣dxq ✏ µ1,

and similarly it is µ2 on the second copy of X ✂ Y . Now an easy computation

gives➺
♣X✂Y q2

d dλ ✏
➺

X

✁
dX♣x, xq �

➺
Y 2

dY ♣y1, y2qλx♣dy1,dy2q
✠

θ♣dxq

✏
➺

X

W
dY

1 ♣ν1,x, ν2,xq θ♣dxq,

so this is an upper bound for Wd
1♣µ1, µ2q.

Lemma 7. Let ♣X, dXq and ♣Y, dY q be as above, and now let θi P PrX and

νi P PrY for i ✏ 1, 2. Then

Wd
1♣θ1 ❜ ν1, θ2 ❜ ν2q ↕ W

dX

1 ♣θ1, θ2q �W
dY

1 ♣ν1, ν2q.
Proof. Let λX P Cpl♣θ1, θ2q and λY P Cpl♣ν1, ν2q be couplings achieving the

Wasserstein distances, and let λ be the product measure

λ♣dx1, dy1,dx2, dy2q :✏ λX♣dx1,dx2q ❜ λY ♣dy1, dy2q.
A simple check shows that λ P Cpl♣θ1 ❜ ν1, θ2 ❜ ν2q and➺

♣X✂Y q2
d dλ ✏

➺
X2

dX dλX �
➺

Y 2

dY dλY .

Corollary 8. Let ♣X, dXq and ♣Y, dY q be as above, let µ P Pr♣X ✂ Y q with

disintegration

µ ✏
➺

X

δx ❜ νx θ♣dxq

over the first coordinate, and let θ✶ P PrX and ν✶ P PrY . Then

Wd
1♣µ, θ✶ ❜ ν✶q ↕

➺
X

W
dY

1 ♣νx, ν✶q θ♣dxq �W
dX

1 ♣θ, θ✶q.
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Proof. The triangle inequality for W1 gives

Wd
1♣µ, θ✶ ❜ ν✶q ↕ Wd

1♣µ, θ ❜ ν✶q �Wd
1♣θ ❜ ν✶, θ✶ ❜ ν✶q,

and now the two terms on the left may be bounded using Lemmas 6 and 7 respec-

tively.

Lemma 9. Suppose that ♣X, µq is a probability space, that A is a finite set, that

x ÞÑ νx is a measurable map X ÝÑ PrA, and that ν :✏ ➩
X

νx µ♣dxq. Then there

is some C → 0, depending only on ⑤A⑤, such that

➺
X

⑥ν ✁ νx⑥TV µ♣dxq ↕ C

❞
H♣νq ✁

➺
X

H♣νxqµ♣dxq.

Proof. The function H is smooth and strictly concave on PrA, with Hessian matrix

that is negative-definite everywhere. Since this Hessian is also continuous, and

PrA is compact, it follows that there is some c → 0 such that

H♣ν✶q ↕ H♣νq �∇H♣νq ✌ ♣ν✶ ✁ νq ✁ c⑥ν✶ ✁ ν⑥2TV ❅ν✶ P PrA.

Letting ν✶ :✏ νx and integrating over µ♣dxq, the linear term vanishes because

ν ✏ ➩
νx µ♣dxq, leaving

➺
X

H♣νxqµ♣dxq ↕ H♣νq ✁ c

➺
X

⑥νx ✁ ν✶⑥2TV µ♣dxq

ùñ
➺

X

⑥νx ✁ ν✶⑥TV µ♣dxq ↕
❞➺

X

⑥νx ✁ ν✶⑥2TV µ♣dxq

↕
❄

c✁1

❞
H♣νq ✁

➺
X

H♣νxqµ♣dxq.

Proof of Theorem 4. The case N ✏ 1 is trivial, since then µ ✏ θ1. So suppose

N ➙ 2, let C be as in Lemma 9, and suppose that the result is known with this

choice of C for product spaces of length at most N ✁ 1. Let µ P PrAN have

one-dimensional marginals θ1, . . . , θN . Let π✁ : AN ÝÑ AN✁1 be the projection

onto the first N ✁ 1 coordinates, let µ✁ :✏ π✁✝ µ, and let

µ ✏
➺

AN✁1

δa ❜ νa µ✁♣daq
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be the disintegration over π✁. Writing AN as the product AN✁1 ✂ A, Corollary 8

gives

WH
1

✁
µ,
â
n↕N

θn

✠
↕
➺

AN✁1

W1♣νa, θN qµ✁♣daq �WH
1

✁
µ✁,

â
n↕N✁1

θn

✠
.

For the first term on the right, Lemmas 9 and 5 give➺
AN✁1

W1♣νa, θN qµ✁♣daq ↕
➺

AN✁1

⑥νa ✁ θN⑥TV µ✁♣daq

↕ C

❞
H♣θN q ✁

➺
AN✁1

H♣νaqµ✁♣daq.

For the second, the inductive hypothesis gives

WH
1

✁
µ✁,

â
n↕N✁1

θn

✠
↕ C

❞
♣N ✁ 1q

✁ ➳
n↕N✁1

H♣θnq ✁H♣µ✁q
✠
.

Adding these estimates, and using the elementary inequality❛
♣N ✁ 1qa�

❄
b ↕

❛
N♣a� bq ❅a, b P r0,✽q,

we obtain the upper bound

C
❄

N

❞ ➳
n↕N

H♣θnq ✁H♣µ✁q ✁H♣µ ⑤π✁q,

Recalling that H♣µq ✏ H♣µ✁q �H♣µ ⑤π✁q, this is equal to

C
❄

N

❞ ➳
n↕N

H♣θnq ✁H♣µq.

Proof of Theorem 3. By a simple induction on N , Lemmas 5 and 7 give

WH
1

✁ â
n↕N

θn,p❜N
✠
↕

N➳
n✏1

⑥θn ✁ p⑥TV.

Combined with Theorem 4 and the triangle inequality for W1, this gives

WH
1 ♣µ,p❜N q ↕ C

❄
N

❞ ➳
n↕N

H♣θnq ✁H♣µq �
N➳

n✏1

⑥θn ✁ p⑥TV.
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Now suppose ε → 0. Since H is continuous on the compact set PrA, there is

some δ → 0 such that

⑥θ ✁ θ✶⑥TV ➔ δ ùñ ⑤H♣θq ✁H♣θ✶q⑤ ➔ ε.

On the other hand, H is bounded by log ⑤A⑤, so, making δ even smaller if necessary,

this can be turned into➳
n↕N

⑥θn ✁ p⑥TV ➔ δN

ùñ
✞✞✞ ➳
n↕N

H♣θnq ✁NH♣pq
✞✞✞ ↕ ➳

n↕N

⑤H♣θnq ✁H♣pq⑤ ➔ εN (1)

(since the left-hand side here implies that ⑥θn✁p⑥TV is very small for most values

of n, and the remaining terms are bounded by log ⑤A⑤, hence cannot contribute too

much to the sum).

Therefore, if H♣µq ➙ N♣H♣pq ✁ δq and also
➦

n↕N ⑥θn ✁ p⑥TV ➔ δN , then

inequality (1) gives

WH
1 ♣µ,p❜N q ➔ C

❄
N
❄

εN � δN � δN ✏ ♣C♣ε� δq � δqN.

Since ε and δ may be chosen arbitrarily small, this completes the proof.

2 Estimates on the d-metric

Now consider the shift action on some AZ
d

. The following is a dynamical-systems

analog of Theorem 3.

Theorem 10. For every finite probability space ♣A,pq and every ε → 0, there is a

δ → 0 for which the following holds: If µ P PrS AZ
d

satisfies

• ⑥µt0✉ ✁ p⑥TV ➔ δ, and

• h♣µq → H♣pq ✁ δ,

then

d♣µ,p❜Z
dq ↕ ε.

Proof. Given ⑤A⑤ and ε, let δ be chosen according to Theorem 3.

For each L P N, the measure µrLsd P PrArLsd has all one-dimensional marginals

equal to µt0✉, hence close to p. Also, it satisfies

H♣µrLsdq ➙ Ldh♣µq → Ld♣H♣pq ✁ δq,
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by the definition of h as an infimum over rectangles. Therefore, Theorem 3 gives

some λ0
L P Cpl♣µrLsd ,p❜rLsdq such that➺

ArLsd✂ArLsd
dH dλ0

L ➔ εLd.

Using this λ0
L, we define can λ1

L P Pr♣AZ
d ✂ AZ

dq as a product measure over

side-L boxes. First, we identify Z
d with rLsd ✂ ♣L ☎Zqd by writing it as a union of

all the boxes obtained from rLsd by translating by elements of ♣L ☎ Zqd. This then

leads to the identification

AZ
d ✂AZ

d ✏ ArLsd✂♣L☎Zqd ✂ArLsd✂♣L☎Zqd ✏ ♣ArLsd ✂ArLsdq♣L☎Zqd ,

and in terms of this right-hand product space we let

λ1
L :✏ ♣λ0

Lq❜♣L☎Zq
d

.

This measure on AZ
d ✂AZ

d

need not be invariant under the shift action on coordi-

nate, but it is invariant under shifting by any element of L ☎Zd, so we may produce

a fully shift-invariant measure by setting

λL :✏ L✁d
➳

vPrLsd

Sv
✝λ

1
L.

We now establish two estimates concerning these measures.

• Let K P N, and let π
r✁K,Ksd

i : AZ
d ✂ AZ

d ÝÑ Ar✁K,Ksd for i ✏ 1 (resp.

i ✏ 2) be the coordinate projection via the first (resp. second) copy of AZ
d

.

Then

π
r✁K,Ksd

i✝ λL ✏ L✁d
✁ ➳

vPrLsd s.t. v�rLsd❹r✁K,Ksd

π
r✁K,Ksd

i✝ ♣Sv
✝λ

1
Lq

�
➳

vPrLsd s.t. v�rLsd❻r✁K,Ksd

π
r✁K,Ksd

i✝ ♣Sv
✝λ

1
Lq
✠
.

On the one hand, if r✁K, Ksd ❸ v � rLsd, then the marginal of Sv
✝λ

1
L on

the first set of coordinates in r✁K, Ksd is just the marginal of λ0
L on some

copy of r✁K, Ksd through the first set of coordinates, and this is precisely

µr✁K,Ksd , because the first marginal of λ0
L is µrLs

d

. On the other hand, the

second term inside the right-hand side above consists of at most 4dKLd✁1
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terms (coming from the ‘boundary’ of v�rLsd). Putting these facts together

gives that

π
r✁K,Ksd

1✝ λL ✏ µrLs
d �O

✁dK

L

✠
,

and similarly

π
r✁K,Ksd

2✝ λL ✏ p❜rLs
d �O

✁dK

L

✠
.

Therefore

π1✝λL ÝÑ µ and π2✝λL ÝÑ p❜Z
d

in the vague topology as L ÝÑ ✽.

• Secondly, observe that

λLta0 ✘ a✶0✉ ✏ L✁d
➳

vPrLsd

λ0
Lt♣am, a✶mqmPrLsd : av ✘ a✶v✉

✏ L✁d

➺
ArLsd✂ArLsd

dH dλL ➔ ε.

Therefore, letting λ P PrS♣AZ
d ✂AZ

dq be any subsequential limit of ♣λLqL➙1

in the vague topology, the first of the above facts implies that λ P J♣µ,p❜Z
dq, and

the second implies that

λta0 ✘ a✶0✉ ↕ lim sup
LÝÑ✽

λLta0 ✘ a✶0✉ ↕ ε,

as required.

The property given by the preceding theorem, slightly generalized, is enough

to warrant its own name.

Definition 11. A shift-system ♣AZ
d

,B♣AZ
dq, µ, Sq is finitely determined if for ev-

ery ε → 0 there are K P N and δ → 0 for which the following holds: If µ P PrS AZ
d

satisfies

⑥νr✁K;Ksd ✁ µr✁K;Ksd⑥TV ➔ δ

and

h♣µq → h♣νq ✁ δ,

then also

d♣µ, νq ➔ ε.

In terms of this property, we can now formulate the full strength of Ornstein’s

Theorem.
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Theorem 12 (Ornstein’s Theorem). For any h P r0,✽q, let B be a choice of

Bernoulli shift of entropy rate h. Then for any other shift-system X with entropy

rate h, the following are equivalent:

i) X is finitely determined.

ii) X ✕ B.

Theorem 10 is the first step towards proving that (ii) ùñ (i). We will not com-

plete the proof of either direction in Ornstein’s Theorem, but will use the property

of being finitely determined in the proof of Sinai’s Theorem.
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